

INFLUÊNCIA DA MATERIA PRIMA NA PRODUÇÃO DE BIOGÁS POR DIFERENTES TIPOS DE VINHAÇA

<u>Pedro Oswaldo Morell¹</u>, Viviane Taisa dos Santos², Dile Pontarolo Stremel³

Universidade Estadual do Oeste do Paraná, Mestrado em Bioenergia
 Universidade Federal do Paraná, Mestrado em Bioenergia
 Universidade Federal do Paraná, Departamento de Biotecnologia

RESUMO

Neste trabalho empregou-se vinhaça proveniente da destilação da fermentação alcoólica do caldo de Cana-de-Açúcar e Sorgo Sacarino para avaliação do potencial metanogênico. Sendo realizada a caracterização química das matérias primas utilizadas, por meio das analises de DQO, Amônia, Nitrato, Nitrito, Nitrogênio, Fósforo Total e Inorgânico além de Sólidos Totais, Fixos e Voláteis. Utilizando-se o planejamento experimental fatorial fracionário foram realizados dois ensaios, A utilizando Vinhaça de Sorgo Sacarino e B utilizando Vinhaça de Cana-de-Açúcar, ensaios realizados simultaneamente em reatores em escala laboratorial, foram avaliadas as variáveis Vinhaça, Uréia, Fosfato Monobásico de Potássio e Fosfato Dibásico de Potássio, o inóculo utilizado foi o efluente de suinocultura de terminação. Os ensaios foram conduzidos em estufa de banho d'água a 35 °C, com tempo de retenção hidráulica de 14 dias. Avaliou-se o volume de biogás produzido no período por meio do deslocamento do embolo da seringa utilizada para medição.

Palavras-chave: Vinhaça, Biodigestão, Biogás.

INTRODUÇÃO

O cultivo do sorgo sacarino (*Sorghum bicolor* L. Moench) é uma alternativa para a produção de etanol na entressafra, sendo cultivados aproximadamente 1,5 milhões de hectares no Brasil, onde são utilizados os colmos extraido-se o caldo para processamento e produção de etanol. O Brasil é o maior produtor mundial de cana-de-açúcar, tendo na safra de 2013-2014 produção de 653.519 milhões de toneladas de cana-de-açúcar, dos quais foram produzidos 27.543 mil de metros cúbicos de etanol (ÚNICA, 2015)

O processamento passa por diversas etapas sendo, o preparo da matéria prima, extração do caldo, tratamento do caldo, fermentação e destilação onde é gerado o etanol e a vinhaça. A qual é um efluente altamente poluidor de cor marrom, natureza ácida, pH variando entre 3,7 e 5, composta em sua maioria, por 93% de água e 7% de sólidos, além de apresentar elementos minerais como o Potássio (K), o Cálcio (Ca), o Nitrogênio (N) e o Enxofre (S) (SEGATO *et al.*, 2006).

A biodigestão anaeróbia é uma complexa interação entre microrganismos que degradam os compostos orgânicos do resíduo formando biofertilizante e biogás, o qual é composto basicamente por Metano (CH₄), Dióxido de Carbono (CO₂), apresentando grande potencial energético, podendo ser empregado na produção de energia elétrica e energia térmica (STARR *et al.*, 2012).

Este trabalho tem por objetivo avaliar o aproveitamento da vinhaça de sorgo sacarino e de cana-de-açúcar, para a produção de biogás.

MATERIAL E MÉTODOS

A caracterização química da vinhaça e do inóculo foi realizada por meio da determinação da DQO, Amônia, Nitrito, Nitrato, Nitrogênio Total, Fósforo Total, Fósforo Inorgânico e teor de Sólidos Totais, Fixos e Voláteis. A DQO mede o consumo de oxigênio ocorrido em função da oxidação química da matéria orgânica, foi determinada pelo método espectrofotométrico. O teor de amônia (NH_4^+) foi determinado de acordo com o método proposto por Koroleff (1976). O teor de nitrito (NO_2^-) foi determinado de acordo com o método proposto por Mackereth; Heron; Talling (1978). O teor de nitrato (NO_3^-) foi determinado através do método de Valderrama (1981) que pressupõe a redução do nitrato a nitrito por meio de cádmio, sendo a técnica mais adequada, em termos de sensibilidade e rapidez. O teor de fósforo inorgânico foi determinado através do método colorimétrico do azul de molibdênio, de acordo com Lampert; Sommer (1997). Os teores de nitrogênio total (N_2) e fósforo total (P_2O_5) foram determinados simultaneamente de acordo com o método proposto por Valderrama (1981). A determinação do teor de Sólidos compreende a determinação de Sólidos Totais, Sólidos Fixos, Sólidos Voláteis, de acordo com o método proposto por Wetzel; Likens (1991).

Os ensaios de biodigestão anaeróbia foram conduzidos em reatores laboratoriais com volume de 120 mL e estufa de banho d'água a temperatura de 35 °C. O tempo de retenção hidráulica deste experimento foi de 14 dias e o inóculo utilizado foi efluente de suinocultura na proporção de 10 mL.

Utilizou-se o Planejamento Experimental Fatorial Fracionário 2⁴⁻¹ + 4 pontos centrais, obtendo-se 20 ensaios em dois ensaios simultâneos, ensaio A utilizando vinhaça de Sorgo Sacarino (VS) e ensaio B utilizando vinhaça de Cana-de-Açúcar (VC). As variáveis utilizadas foram vinhaça nas proporções de 25 e 50 mL, como fonte de fósforo utilizou-se Fosfato Monobásico de Potássio (MP) a partir de solução 20 g.L⁻¹, nas proporções de 5 e 10 mL da respectiva solução e o Fosfato Dibásico de Potássio (DP) a partir de solução 2 g.L⁻¹, nas proporções de 5 e 10 mL da respectiva solução, como fonte de nitrogênio utilizou-se Uréia (UR) a partir de solução 3,5 g.L⁻¹, nas proporções de 5 e 10 mL da respectiva solução.

RESULTADOS E DISCUSSÃO

Segundo Oliveira (2012), a composição química da vinhaça pode variar dentro de largos limites, sendo influenciada por diversos fatores, em que pode ser destacada a natureza e composição da matéria-prima. A caracterização química das vinhaças e inóculo esta expressa na Tabela 1.

Tabela 1. Caracterização química das Vinhaças e Inóculo

Determinações	Sorgo sacarino	Cana-de-Açúcar	Inóculo
DQO	87.747 (mg.L ⁻¹)	27.224 (mg.L ⁻¹)	32.657 (mg.L ⁻¹)
Amônia	800 (mg.L ⁻¹)	4.387 (mg.L ⁻¹)	6.828 (mg.L ⁻¹)
Nitrato	951 (mg.L ⁻¹)	1.264,9 (mg.L ⁻¹)	10.718 (mg.L ⁻¹)
Nitrito	146 (mg.L ⁻¹)	393,6 (mg.L ⁻¹)	3.286 (mg.L ⁻¹)
Nitrogênio Total	1.897 (mg.L ⁻¹)	6.537 (mg.L ⁻¹)	20.832 (mg.L ⁻¹)
Fósforo Total	2.341 (mg.L ⁻¹)	19.567 (mg.L ⁻¹)	43.340 (mg.L ⁻¹)
Fósforo Inorgânico	1.498 (mg.L ⁻¹)	15.135 (mg.L ⁻¹)	36.504 (mg.L ⁻¹)
Sólidos Totais	74,68 (g.L ⁻¹)	15 (g.L ⁻¹)	78,93 (g.L ⁻¹)
Sólidos Fixos	8,37 (g.L ⁻¹)	3 (g.L ⁻¹)	6,40 (g.L ⁻¹)
Sólidos Voláteis	66,3 (g.L ⁻¹)	12 (g.L ⁻¹)	72,53 (g.L ⁻¹)

De acordo com Freire & Cortez (2000), a vinhaça apresenta elevadas taxas de DQO 10.000 a 210.000 mg.L⁻¹. Ueno *et al.,* (2013), caracterizaram a vinhaça e obtiveram valores de nitrogênio total 2.380 mg.L⁻¹, e fósforo 127,3 mg.L⁻¹.

O volume acumulado de biogás produzido durante o período de incubação utilizando

O volume acumulado de biogás produzido durante o período de incubação utilizando planejamento experimental fatorial fracionário utilizando diferentes tipos de vinhaça está expresso na Tabela 2.

Tabela 2. Volume acumulado de biogás produzido com diferentes tipos de vinhaça

Ensaio	Biogás de Sorgo Sacarino	Biogás de Cana-de-Açúcar
1	142 (mL)	131 (mL)
2	204 (mL)	155 (mL)
3	290 (mL)	165 (mL)
4	157 (mL)	145 (mL)
5	246 (mL)	170 (mL)
6	169 (mL)	137 (mL)
7	214 (mL)	141 (mL)
8	269 (mL)	172 (mL)
9	274 (mL)	169 (mL)
10	140 (mL)	131 (mL)
11	163 (mL)	127 (mL)
12	181 (mL)	198 (mL)
13	159 (mL)	129 (mL)
14	150 (mL)	148 (mL)
15	177 (mL)	200 (mL)
16	182 (mL)	137 (mL)
17	145 (mL)	168 (mL)
18	143 (mL)	166 (mL)
19	169 (mL)	168 (mL)
20	162 (mL)	162 (mL)

O volume de biogás gerado e acumulado durante o período de incubação no ensaio A utilizando VS variou entre 140 mL e 290 mL, nos ensaios A10 composto por 50 mL de VS, 5 mL

de MP, 5 mL de DP e 10 mL de UR e o ensaio A3 composto por 25 mL de VS, 10 mL de MP, 5 mL de DP e 5 mL de UR, respectivamente.

Enquanto que o volume de biogás gerado e acumulado durante o período de incubação no ensaio B utilizando VC variou entre 127 mL e 200 mL, nos ensaios B11 composto por 25 mL de VC, 10 mL de MP, 5 mL de DP e 10 mL de UR e o ensaio B15 composto por 25 mL de VC, 10 mL de MP, 10 mL de DP e 10 mL de UR, respectivamente.

CONCLUSÕES

Pode-se concluir que a vinhaça de Sorgo Sacarino apresenta potencial de produção de biogás superior a vinhaça de Cana-de-Açúcar, uma vez que os volumes produzidos de biogás apresentaram-se mais elevados sob as mesmas condições experimentais, sendo nos ensaios A, a produção máxima foi de 290 mL enquanto que nos ensaios B, a produção máxima foi de 200 mL.

No ensaio A, proporções maiores de ambas as variáveis analisadas influenciaram na produção de biogás. Enquanto que no ensaio B, a adição de proporção maior de Fosfato Dibásico de Potássio tem influenciado na produção de biogás.

Agências de Fomento: Capes, CNPq, Universidade Federal do Paraná – Setor Palotina.

REFERÊNCIAS

- FREIRE, W. J.; CORTEZ, L. A. B, **Vinhaça de cana-de-açúcar**, Editora, Agropecuária, Campinas, 203p. 2000
- LAMPERT, W; SOMMER, U. **Limnoecology: the ecology of lakes and streams**. New York: Oxford University Press, 382 p. 1997
- MACKERETH, J. F. H.; HERON, J.; TALLING, J. F. **Water analysis: some revised methods for limnologists**. Freshwater Biological Association, n. 36, 121 p., 1978
- OLIVEIRA, F. S. Vinhaça: **O Futuro da Bioeletricidade, Tecnologia em Biocombustíveis,** Faculdade de Tecnologia de Araçatuba, SP, 2012
- SEGATO, S. V; PINTO, A. S; JENDIROBA, E; NÓBREGA, J. C. M. **Atualização em produção de cana-de-açúcar.** Piracicaba: Editora. p.369-375, 2006
- STARR, K.; GABARREL, X.; VILLALBA, G.; TALENS, L.; LOMBARDI, L. Life cycle assessment of biogas up grading technologies. Waste Management, v.32, p.991-999, 2012
- UENO, C. R. J.; FRARE, L. M.; GIMENES, M. L.; ZANIN, G. M. **Influência da adição fracionada de vinhaça na produção de biogás.** Revista brasileira de Biociências, v.11, n.1, p.115-118, 2013
- UNICA. Tabelas Safra 2013/14. http://www.unicadata.com.br/historico-de-producao-e-moagem.php?idMn=32&tipoHistorico=4&acao=visualizar&idTabela=1610&safra=2013%2F2014&esta do=RS%2CSC%2CPR%2CSP%2CRJ%2CMG%2CES%2CMS%2CMT%2CGO%2CDF%2CBA%2CSE%2CAL%2 CPE%2CPB%2CRN%2CCE%2CPI%2CMA%2CTO%2CPA%2CAP%2CRO%2CAM%2CAC%2CRR Acesso em 17/05/2015.
- VALDERRAMA, J. C. The simultaneous analisys of total nitrogen and phosphorus in natural waters. Mar. Chem., v.10, p.109-122. 1981
- WETZEL, R. G.; LIKENS, G.E. Limnological Analyses. New York: Springer Velage. 391p. 1991