X Congres "In

X Congresso Brasileiro de Engenharia Química Iniciação Científica

"Influência da pesquisa em Engenharia Química no desenvolvimento tecnológico e industrial brasileiro"

> Universidade Federal Rural do Rio de Janeiro Universidade Severino Sombra Vassouras – RJ – Brasil

DESENVOLVIMENTO DE UM ALIMENTO FUNCIONAL A PARTIR DA DESIDRATAÇÃO OSMÓTICA E SECAGEM EM ESTUFA DA BETERRABA

RIBEIRO¹, J.S.; MACAGNAN¹, C.C.; PINHEIRO¹, L.N.; FREITAS¹, M.S.; DRUZIAN¹, S.P. E TERRA², L.M.

¹Aluna do DEQ/UFSM ² Professora do DEQ/UFSM
Departamento de Engenharia Química - Universidade Federal de Santa Maria

Endereço – DEQ/CT/UFSM, Av. Roraima, 1000, Camobi – Santa Maria, RS – CEP: 97105-900
e-mail: lisianeterra@gmail.com

<u>RESUMO</u> - A beterraba (Beta vulgaris) possui características de alimento funcional, contendo substâncias bioativas e pigmentos com propriedades antioxidantes. A realização de um processo de desidratação osmótica seguido de secagem em túnel de vento apresenta-se como uma alternativa para obtenção de um produto que preserva suas características originais aumentando o tempo de conservação e vida útil. Visando definir as melhores condições de aplicação do processo de secagem, com objetivo de obter um alimento desidratado e funcional, encontrou-se como condições ótimas a desidratação osmótica em solução de 50°Brix de sacarose (97%) e cloreto de sódio (3%), na proporção massa de solução por massa de alimento de 10:1, em uma temperatura de 40°C por 2 horas, e secagem em estufa a uma temperatura de 65°C por um período de tempo de 3 horas.

Palavras chave: beta vulgaris, bioativos, conservação.

INTRODUÇÃO

A beterraba (*Beta vulgaris*), hortaliça pertencente à família das Quenopodiáceas, possui características de alimento funcional, pois contém substâncias bioativas (licopeno) e pigmentos (carotenóides e flavonóides), que possuem propriedades antioxidantes e protegem contra doenças cardíacas, acidentes vasculares cerebrais, além de fortalecer o sistema imunológico (ARAUJO FILHO, 2008).

A secagem apresenta-se como alternativa para obtenção de um alimento funcional com boa estabilidade microbiológica e menor deterioração em relação ao produto *in natura*, aumentando o tempo de conservação e vida útil, além de facilitar o armazenamento e transporte. O processo envolveu um prétratamento de desidratação osmótica e a secagem propriamente dita, com o propósito de maximizar a perda de água do alimento.

A desidratação osmótica é uma técnica aplicada para remover água de alimentos frescos, colocando-os em contato com uma solução concentrada de maior pressão osmótica. Este método é utilizado como um pré-tratamento na secagem de frutas e vegetais para maximizar a remoção de água e minimizar as perdas de componentes e

características originais do alimento como cor, sabor e textura (GOMES *et al*, 2007).

Apesar do processo de desidratação osmótica alcançar significativa perda de água e redução da atividade de água no alimento, este processo sozinho não alcança o nível desejado de conservação do alimento. Então, se faz necessária a posterior utilização de um processo de secagem para alcançar os níveis desejados.

A secagem é um termo mais restrito utilizado para designar a desidratação por meio do emprego de ar aquecido. É um processo de transferência simultânea de calor e massa, onde é requerida energia para evaporar a umidade da superfície do produto para o meio externo, convencionalmente o ar (PARK, COLATO E OLIVEIRA, 2007).

A análise de parâmetros como a atividade da água ao final de cada processo permite a avaliação da viabilidade do processo como um todo e a definição da melhor rota de secagem para obtenção de um alimento funcional a partir da beterraba.

METODOLOGIA

Foram utilizadas beterrabas de raiz vermelha obtidas em um mercado local da cidade de Santa Maria, Estado do Rio Grande do Sul e selecionadas de acordo com critérios de grau de maturação avançado (aproveitamento de matéria-prima de menor custo), tamanho, forma e aparência saudável, fatiadas com espessura de 3mm.

Desidratação Osmótica

A desidratação osmótica foi conduzida em um banho de 22 litros provido de agitação e utilizou como agente osmótico sacarose comercial (97%) e cloreto de sódio (3%), em solução.

A razão de massa de solução por massa do alimento foi de 10:1 e o tempo de imersão do alimento em solução de duas horas.

Através de um planejamento fatorial avaliou-se a influência das variáveis de entrada (temperatura e concentração da solução osmótica) sobre as variáveis respostas (perda de massa, perda de água, incorporação de sólidos, relação teor de sólidos solúveis e relação atividade de água).

Para tal avaliação aplicou-se um delineamento composto central rotacional (DCCR) com dois níveis originais, tendo assim 4 pontos fatoriais, 4 pontos axiais e 4 repetições do ponto central, e investigou o efeito da variação da temperatura (30 a 50°C) e da concentração da solução (40 a 60° Brix).

Ao final da desidratação, as fatias foram retiradas da solução e secas superficialmente com papel absorvente, para serem submetidas à secagem em estufa.

Secagem em estufa

Primeiramente, foi estudada a cinética de secagem em estufa do produto desidratado osmoticamente, para melhor avaliar, projetar e otimizar o processo. Isto permitiu definir o intervalo de variação do novo DCCR, que teve como variáveis independentes: a temperatura (40 a 70°C) e tempo de secagem (168,2 a 240 min), e dependentes: porcentagem de massa perdida (redução de umidade) e redução de atividade da água, esta última medida no aparelho AquaLab.

RESULTADOS E DISCUSSÕES

Desidratação osmótica

Os modelos obtidos com parâmetros estatisticamente significativos (p<0,05) desenvolvidos para cada variável resposta a partir da regressão linear dos dados experimentais, utilizando o software Statistica 7.0, constam nas Equações 1 a 4.

Perda de água =
$$63,1976 + 3,3485*C - 1,5683*C^2 + 1,0503*T - 0,4491*T^2 - 0,555*T*C$$
 (1)

Incorporação de sólidos =
$$10,5900 + 1,4634*C - 0,2739*C^2 + 0,2610*T - 0,7115*T^2 + 1,1125*T*C$$
 (2)

Relação atividade de água =
$$0.9337$$
 - $0.0194*C + 0.0033*C^2 - 0.0050*T + 0.025*T^2$ - $0.0085*T*C$ (3)

Relação teor sólidos solúveis =
$$5,8421 + 0,5465*C - 0,7424*C^2 - 0,0125*T - 0,3803*T^2 + 0,18*T*C$$
 (4)

Onde C corresponde à concentração de solução e T a temperatura, para valores das variáveis codificadas.

As Tabelas 1 e 2 mostram o efeito das variáveis independentes nas variáveis dependentes.

Tabela 1 - Efeito das variáveis independentes na perda de massa (PM) e na perda de água (PA)

(1 A).					
Ensaio	C(°Brix)	T(°C)	%PM	%PA	
1	42,91	32,91	52,39	55,78	
2	42,91	47,09	55,78	60,67	
3	57,09	32,91	57,19	62,75	
4	57,09	47,09	58,47	65,42	
5	40	40	52,12	54,79	
6	60	40	59,93	65,42	
7	50	30	59,13	62,04	
8	50	50	57,8	62,62	
9 (C)	50	40	63,92	66,67	
10 (C)	50	40	63,73	66,12	
11 (C)	50	40	53,12	59,61	
12 (C)	50	40	55,28	60,39	

Tabela 2 - Efeito das variáveis de entrada na incorporação de sólidos (IS), relação teor de sólidos solúveis (RTSS) e relação de atividade de água (RAw)

de agua (RAW).						
Ensaio	Inc. sólidos	RTSS	RAw			
1	10,03	4,73	0,986			
2	7,57	3,89	0,981			
3	10,25	5,33	0,96			
4	12,24	5,21	0,921			
5	7,22	3,43	0,965			
6	12,03	5,16	0,916			
7	7,85	4,71	0,982			
8	9,66	5,32	0,985			
9 (C)	9,01	6,34	0,927			
10 (C)	9,73	6,59	0,925			
11 (C)	12,01	5,15	0,943			
12 (C)	11,62	5,29	0,94			

Analisando-se as tabelas anteriores, o ponto ótimo de operação do processo, em que se obteve maior perda de massa, perda de água e relação teor de sólidos solúveis, e menor incorporação de sólidos e relação atividade de água, foi obtido para uma concentração de 50 °Brix e 40 °C.

Na desidratação a 40 °C, um aumento da concentração da solução para 60 °Brix

ocasionou uma diminuição da perda de massa, o que pode ter ocorrido como consequência da impregnação de sólidos na camada superficial das amostras de beterraba, o que dificulta a perda de massa (AZEREDO, 2000).

Secagem em estufa

Os modelos obtidos com parâmetros estatisticamente significativos desenvolvidos para cada variável resposta a partir da regressão linear dos dados experimentais, utilizando o software Statistica 7.0, constam nas Equações 5 e 6.

Perda de massa =
$$58,34561 + 8,15458*T - 5,44078*T^2 + 7,22639*t - 5,30510*t^2 - 5,71129*T*t$$
 (5)

$$RAw = 0.494111 + 0.161505*T - 0.046556*T^{2} + 0.127738*t - 0.035806*t^{2} - 0.089417*T*t$$
 (6)

Onde t corresponde ao tempo de secagem e T a temperatura de secagem, para valores das variáveis codificadas.

A Tabela 3 apresenta os valores obtidos para variáveis dependentes na secagem em estufa.

Tabela 3 - Dados secagem em estufa.

T (°C)	t (min)	% Perda de	Atividade da
		massa	água
44.36	94.8	69.69	0.8713
44.36	265.2	80.92	0.4653
65.64	94.8	79.34	0.4267
65.64	265.2	79.32	0.3783
40	180	66.56	0.8987
70	180	82.44	0.3610
55	60	67.72	0.8090
55	300	80.21	0.4077
55	180	79.70	0.5173
55	180	78.93	0.4927
55	180	79.87	0.4747

O ponto ótimo da análise das variáveis temperatura e tempo foi determinado como a região de sobreposição dos gráficos de redução de umidade e redução da atividade de água para uma mesma temperatura, levando às maiores reduções.

Combinando todas as variáveis, o ponto ótimo de secagem é obtido para temperatura próxima a 65°C por um período de 3 horas.

CONCLUSÕES

O estudo mostrou a importância da desidratação osmótica realizada previamente à secagem em estufa. O pré-tratamento auxiliou na perda de água inicial, contribuindo para a redução de atividade de água. O ponto ótimo para desidratação osmótica corresponde a uma concentração de 50°Brix, a uma temperatura de 40°C.

O processo de secagem se mostrou eficiente no que diz respeito à conservação do alimento, visto que em determinadas faixas de temperatura e tempo de exposição ao processo apresentou baixos valores de atividade de água, variável importante no que diz respeito a conservação de alimentos, objetivo deste trabalho. O ponto ótimo de secagem foi obtido para uma temperatura de 65°C por 3 horas.

Dessa forma, foi possível alcançar o objetivo do trabalho, que visava obter um alimento com boa estabilidade microbiológica, conservando as características de alimento funcional.

REFERÊNCIAS

- ANTONIO, G.C. et al. "Osmotic dehydration of sweet potato (Ipomoea batatas in ternary solutions)". Ciência e Tecnologia de Alimentos, Campinas, v. 28, n. 3, 2008.
- ARAUJO FILHO, D. G. Obtenção de produto farináceo a partir de beterrabas submetidas à secagem estacionária. 2008. 57 f. Tese (Mestrado em Agronomia) UEPG, 2008.
- AZEREDO, H. M. C.; JARDINE, J. G. "Desidratação osmótica de abacaxi aplicada a tecnologia de métodos combinados". Ciência e Tecnologia de Alimentos, Campinas, v. 20, n. 1, p. 74-82, 2000.
- GERMER, S. P. M. et al. "Process variables in the osmotic dehydration of sliced peaches". Ciência e Tecnologia de Alimentos, Campinas, vol. 30, n. 4, 2010.
- GOMES, A.T.; CEREDA, M.P.; VILPOUX, "Desidratação osmótica: O. de tecnologia baixo custo para desenvolvimento da agricultura familiar." Revista Brasileira de Gestão Desenvolvimento Regional, v.3, n. 3, p. 212-226, 2007.
- PARK, K.J.; COLATO, A.; OLIVEIRA, R.A. Conceitos de processos e equipamentos de secagem. Campinas, v. 1, 2007.
- PONTING, J. D. et al. "Osmotic Dehydration of Fruits". Food Technology, v.20, p.125-128, 1966.