

ESTUDO DO EFEITO DE NANOPARTÍCULAS DE OURO INCORPORADAS EM CATALISADORES DE DIÓXIDO DE TITÂNIO SINTETIZADOS ATRAVÉS DO PROCESSO SOL-GEL

I. B. P. FERREIRA¹ e C. D. R. de SOUZA¹

¹ Universidade Federal do Amazonas, Departamento de Engenharia Química E-mail para: iagopacheco.ib@gmail.com

RESUMO – Os nanomateriais decorrem da possibilidade de terem suas propriedades físicas e químicas moduladas em função da distribuição de tamanho e geometria das nanopartículas. Estes podem ser incorporados aos materiais a fim de melhorar ou conferir novas propriedades. Em particular, nanopartículas metálicas exibem propriedades óticas extremamente interessantes. Logo, este trabalho teve como objetivo verificar a interação entre nanopartículas de ouro com catalisadores de TiO₂ sintetizado pelo método sol-gel em diferentes temperaturas durante o tratamento térmico, para testes posteriores na aplicação e eficiência na atividade fotocatalítica na região do visível. As nanopartículas de ouro (AuNPs) foram incorporadas ao TiO₂, utilizando como precursor o isopróxido de titânio pelo método sol-gel, calcinado à 400°C, 600°C e 800°C. As caracterizações do complexo AuNP-TiO₂ foram feitas pelas análises de DRX, UV-Vis, MEV, EDS e FRX. Grupos nanoestruturados foram obtidos conforme o aumento da temperatura no tratamento térmico, além disso o tamanho das AuNPs diminuiu até sua aparente ausência à 800°C, apresentando menores quantidades de Au, porém ocorreu um aumento no tamanho da partícula do semicondutor, e também no teor de titânio. Portanto, o método de síntese e o tratamento térmico são parâmetros que possuem grande influência na obtenção deste catalisador. A temperatura do tratamento térmico mais pertinente a aplicações fotocatalíticas observada foi a 600°C devido as suas características, como maior teor de ouro, além de uma morfologia nanoestruturada mais interessante a aplicações.

1. INTRODUÇÃO

A possibilidade de projetar materiais com propriedades pré-estabelecidas é decorrente da nanoescala, sendo a base das diversas aplicações dos nanomateriais (Peters *et al*, 2016). Assim, o controle do tamanho das partículas e a modificação da superfície permitem o uso extensivo de nanopartículas de ouro (AuNPs) em tecnologias avançadas, como aplicações biológicas, condutores eletrônicos e catálise (Han Lee *et al.*, 2017), isto devido ao fato do seu comportamento catalítico e também por sua alta seletividade em reações. As propriedades ópticas de nanopartículas metálicas surgem da interação da luz com nanoestruturas de dimensões menores que o seu comprimento (Marangoni *et al.*, 2013). AuNPs mostram absorções bem definidas em regiões do espectro visível, denominadas de banda *plasmon* ressonante, com picos acentuados ($\lambda_{máx}$) na faixa de 530 nanômetros.

Por sua vez, o dióxido de titânio (TiO₂), ou titânia, é um material versátil, que apresenta propriedades interessantes, como sua baixa reatividade química e semicondutância fotossensível. Para a obtenção deste óxido existem vários métodos, um deles é o processo solgel, técnica amplamente utilizada por ser ambientalmente viável, de baixo custo e que possibilita a obtenção de pós em escala nanométrica com homogeneidade química satisfatória e alta pureza em baixas temperaturas. O método baseia-se no preparo e manipulação controlada de suspenções coloidais, onde ocorrem as reações de hidrólise e condensação do precursor para a formação de partículas de tamanho coloidal (sol) e posteriormente formação da rede tridimensional (gel) (Braga, 2014).

Por apresentar diversas vantagens, este semicondutor possui um amplo campo de aplicações, sendo bastante estudado e utilizado no processo de fotocatálise heterogênea, devido ao seu custo e eficiência. Suas propriedades fotocatalíticas são derivadas da formação de portadores de cargas fotogeradas (lacuna e elétron) que ocorre após a absorção da luz em diferentes espectros, porém, correspondendo a banda de gap (Srikanth *et al.*, 2017). Porém este semicondutor possui pequena fotoatividade na faixa do visível, restringindo apenas a faixa UV, de modo que a luz UV está em apenas 3-5% da luz solar total incidente, e a luz visível em quase 45% (Gogoi *et al.*, 2017).

A realização de dopagem neste semicondutor com metais, como o ouro citado anteriormente, abre a possibilidade de mudar a estrutura eletrônica das nanopartículas de TiO₂, alterando sua composição química e propriedades ópticas, fazendo com que seja possível aplicá-lo diretamente em funções específicas. (Anton et al., 2015).

Portanto, o presente estudo tem como finalidade verificar a interação entre nanoparticulas de ouro associadas a catalisadores de TiO_2 sintetizados pelo método sol-gel em diferentes tempertaruras de calcinação, para testes posteriores na aplicação e verificação da eficiência na atividade fotocatalítica na região do visível.

2. METODOLOGIA

As nanopartículas de ouro foram preparadas pela redução do ácido cloroáurico com citrato de sódio. Foram utilizados 20 mL de solução do ácido (35:100) e 5 mL de solução de citrato de sódio (1:25), deixados em refluxo em um balão de 3 bocas por 60 minutos, para reação e formação de AuNPs. A síntese do TiO_2 foi realizada pelo método sol-gel, com razão volumétrica do isopropóxido de titânio, água deionizada e etanol mantidos a 6:10:100.

Primeiramente, foi utilizado álcool etílico para hidrolisar isopropóxido de titânio em temperatura ambiente, seguida da adição de água deionizada sob agitação contínua durante 1 hora. Posteriormente adicionou-se a solução coloidal de ouro preparada anteriormente, deixando em agitação por mais 1 hora para que ocorresse hidrólise e condensação dos componentes. A solução resultante foi deixada em repouso por 24 horas para processo de nucleação. Em seguida, o material foi submetido a secagem (75°C) por 12 horas em estufa para obtenção do gel seco, finalizando então com o tratamento térmico, calcinado à 400°C, 600°C e 800°C.

O material foi caracterizado em um Difratômetro de Raios-X pelo equipamento X-Ray Diffractometrer Lab X, modelo XDR-6000, marca Shimadzu, com radiação CuKa. As

amostras foram escaneadas na faixa 20 de 20° a 60°, velocidade de 2°/minuto, voltagem de 40 kV e corrente de 30 mA. Os ensaios de MEV e EDS foram realizados pelo equipamento de modelo Quanta 250 e marca Fei Company. As análises de UV-Vis foram executadas em um espectrofotômetro modelo Global Trade Technology, em cubetas de quartzo, com caminho ótico de 1 cm. As análises de FRX foram realizadas em equipamento da marca Panalytical modelo Epsilon 3-X, com tensão máxima de 50 kV, corrente máxima de 3 mA e gás hélio (pressão 10 atm./10 kgf/cm²).

3. RESULTADOS E DISCUSSÃO

3.1. Espectroscopia de absorção região do ultravioleta e visível (UV/Vis)

A análise de UV/Vis foi realizada para identificação de nanopartículas de ouro no catalisador, por meio da presença da banda *plasmon* ressonante característica. Nota-se pela Figura 1, um $\lambda_{máx}$ em 530 nm para os catalisadores sinterizados a 400°C e 600°C, identificando presença de AuNPs com tamanho médio acima de 40 nanômetros, como descrevem Zhang *et al.* (2014), tamanho característico para esta faixa, onde a 600°C ocorreu uma forte banda de absorção com pico bastante acentuado. Porém é possível observar que o catalisador tratado a 800°C não houve formação de AuNP aparente. Os autores citam que as nanopartículas são termodinamicamente instáveis, principalmente devido a sua superfície de contato, assim a elevada temperatura durante o tratamento térmico pode ter ocasionado deficiência na formação destas nanopartículas metálicas.

Figura 1 - Espectros de UV/Vis para catalisadores Au+TiO₂ calcinados à 400°C, 600°C e 800°C.

3.2. Difração de Raios-X (DRX)

A partir da caracterização estrutural das nanopartículas de Au+TiO₂ por DRX, foi obtido o difratograma exibido na Figura 2. É possível notar que na amostra a 400°C, ocorreu formação de apenas duas fases cristalinas, cujos picos de difração correspondentes estão identificados no espectro de difração, anatase, a estrutura mais estável, e bruquita, estrutura presente em baixas temperaturas, características citadas pelos autores Anton *et al.* (2015).

Figura 2 - DRX para amostras a diferentes temperaturas. Sendo, R - rutilo, A - anatásio e B - bruquita.

Para a amostra processada a 600°C, destaca-se a formação predominante da fase cristalina anatase, enquanto que a fase bruquita ocorre em menor intensidade, o que se encontra de acordo com Shalimar *et al.* (2016), pois nessa faixa de temperatura ocorre transição das fases anatase e bruquita para rutilo. Pode-se também observar que os picos de difração mostraram considerável alargamento, indicando, assim, a característica nanométrica das partículas do pó de Au-TiO₂. O tamanho de cristalito médio calculado pela equação de Scherrer foi de 13,10 nm, 21,50 nm e 37,80 nm, à 400°C, 600°C e 800°C, respectivamente.

3.3. Microscopia Eletrônica de Varredura (MEV)

Com os ensaios de Microscopia de Eletrônica de Varredura, mostrados na Figura 3, foi possível visualizar a imagem estrutural das amostras, que apresentaram morfologia nanoestruturada, assim como observa-se também a formação de aglomerados de partículas de aproximadamente 1µm, o que propõe o tamanho de partícula na escala nanométrica.

Figura 3 - MEV das amostras do catalisador calcinados a 400°C, 600°C e 800°C respectivamente. Com o aumento de 1000 x e 10000 x.

É possível constatar que com o aumento da temperatura de sinterização o catalisador passa de uma estrutura mais compactada e formações cristalinas mais estruturadas, porém conglomerada, para uma estrutura maior e posteriormente mais densa com alguns pequenos filamentos variados e formas heterogêneas.

3.4. Espectroscopia por energia dispersiva de Raios X (EDS)

A Tabela 4 exibe a análise de espectroscopia dispersiva de Raios-X das áreas selecionadas dos três catalisadores sintetizados, confirmando que as amostras possuem teor de ouro em sua composição elementar. Salienta-se que para Au-TiO₂ a 600°C apresentou uma maior quantidade de ouro, além da presença de outros elementos, enquanto que no catalisador sinterizado a 800°C, apresentou menor quantidade. Vale destacar a presença de outros elementos em baixas quantidades como o fosforo presente nas três amostras, alumínio nas amostras calcinadas a 600°C e 800°C, e silício apenas na amostra Au-TiO₂ a 600°C. Isto se deve pelo fato da análise de EDS ser realizada em determinados pontos da amostra, o que é possível que ocorra algumas variações. Outra informação importante é o teor de titânio, que aumenta com o aumento da temperatura durante o tratamento térmico.

Amostra	Ti (%)	O(%)	Au (%)	Si (%)	P (%)	Al(%)
A T'O 1000C	45.00	40.74	5.02		0.01	
Au-110 ₂ a 400°C	45,22	49,74	5,03	-	0,01	-
Au-TiO ₂ a 600°C	47,06	42,64	10,21	0,03	0,04	0,02
_	,	,	,	,	,	,
Au-TiO ₂ a 800°C	50,39	47,05	2,48	-	0,05	0,03
	· ·					

Tabela 1 – Composição das amostras analisadas em diferentes pontos nas análises de EDS.

3.5. Fluorescência de Raios-X (FRX)

Os ensaios de FRX foram realizados para proporcionar informação da composição das amostras mais precisamente através da técnica, como mostrado na Tabela 2. Atenta-se que o maior teor de ouro se encontra na amostra 2, tratada a 600°C, em contrapartida, a amostra 3 exibiu menor quantidade, corroborando com a análise de EDS realizada. Houve formação de outros óxidos em baixas quantidades, como a alumina (Al₂O₃) e óxido de ferro apenas para a amostra Au-TiO2 a 600°C, pois durante o tratamento térmico ocasiona a aparição destes componentes.

Tabela 2. Composição química dos catalisadores calcinados nas três diferentes temperaturas.

Amostra	TiO(%)	Δ_{11} (%)	$P_2 O_2 (\%)$	$\Delta l_{2} O_{2} (\%)$	$Ee_{0}O_{1}(\%)$	$C_{2}O(\%)$	$\Delta \sigma (\%)$	Demais (%)
Allosua	110 (70)	Au (70)	1 205 (70)	$H_2O_3(70)$	10203(70)	CaO (70)	Ag (70)	Demais (70)
An $T_{10} = 400^{\circ}C$	02 328	6.86	0.487	0.016	Ο	0.142	0.120	0.047
Au-110 ₂ a 400 C	92,320	0,00	0,407	0,010	0	0,142	0,120	0,047
Λ_{11} TiO ₂ a 600°C	87 253	12.03	0 3 8 0	0.032	0.007	0.1/3	0.110	0.027
$Au - 110_2 a 000 C$	07,255	12,05	0,369	0,052	0,007	0,145	0,119	0,027
Au TiO. a 800°C	06 144	3 1 /	0 306	0.020	Ο	0.145	0.121	0.034
$Au - 110_2 a 800 C$	90,144	5,14	0,390	0,020	0	0,145	0,121	0,034

4. CONCLUSÕES

A partir das caracterizações realizadas, o complexo Au-TiO₂ sintetizado pelo método sol-gel mostrou que a variação de temperatura do processo de calcinação foi o parâmetro determinante na obtenção da fase cristalina, o que consequentemente afetou outros parâmetros como o tamanho das partículas e a estrutura do material. Foi possível verificar que com o aumento da temperatura, a quantidade de titânio aumentou, isto devido a mudança e transformação das fases cristalinas, bem como, as nanopartículas mostram tendência de aglomeração fazendo com que ocorram mudanças nas suas características. Com os ensaios de composição do catalisador, notou-se uma variação nos teores de ouro e de titânio, principalmente em temperaturas mais elevadas. O catalisador Au-TiO₂ a 600°C apresentou maior teor de ouro, além de uma morfologia nanoestruturada mais interessante a aplicações.

Portando, a partir dos resultados obtidos, pretende-se dar continuidade nos estudos deste catalisador produzido para realização de testes em processos fotocatalíticos para degradação de poluentes orgânicos por meio de luz solar.

5. REFERÊNCIAS

- ANTON, L. B.; BRAGA, N. A. Nanoparticulas de TiO₂: síntese pelo método sol-gel e técnicas de caracterização. *Scientia Amazonia*. n.7, p. 36-59, 2015.
- BRAGA, A. N. S., et al. Síntese de mulita pelo processo sol-gel: Uma revisão da literatura. *Revista Eletrônica de Materiais e Processos*, v. 9, n. 2, p. 60 73, 2014.
- GOGOI, N.; BORAH, G.; GOGOI, P. K.; CHETIA, T. R. TiO₂ supported gold nanoparticles: an efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation. *Chemical Physics Letters*. v. 692, p. 224-231. 2017
- HAN LEE, S.; JUNG, H. K.; KIM, T. C. Facile method for the synthesis of gold nanoparticles using an ion coater. Yongin, Republic of Korea. *Applied Surface Science*. v. 434, p. 1001-1006, 2017.
- MARANGONI, V. S.; PAINO, I. M.; ZUCOLOTTO, V. Synthesis and characterization of jacalin-gold nanoparticles conjugates as specific markers for cancer cells. *Colloids and Surfaces B: Biointerfaces*, v.112, p.380–386, 2013.
- PETERS, R.J.B.; BOUWMEESTER, H.; GOTTARDO, S.; AMENTA, V.; ARENA, M.; BRANDHOFF, P.; MARVIN, H.J.P.; MECH, A.; BOTELHO MONIZ, F.; PESUDO, L.Q.; RAUSCHER, H.; SCHOONJANS, R.; UNDAS, A.K.; VETTORI, M.V.; WEIGEL, S.; ASCHBERGER, K.; Nanomaterials for products and application in agriculture, feed and food. *Trends Food Sci. Technol.* vol. 54. 2016.
- SHALIMAR, S. B.; XAVIER, L. P. S.; SILVA, A. C.; AQUINO, S. F. Imobilização de dióxido de titânio em diferentes materiais suporte para o emprego em fotocatálise heterogênea. *Química Nova*. Vol. 39 (7), p. 836-844. 2016.
- SRIKANTH, B.; GOUTHAM, R.; NARAYAN, R. B.; RAMPRASATH, A.; GOPINATH, K. P.; SANKARANARAYANAN, A. R. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. TN, Índia. *Journal of Environmental Management*, v. 200, p. 60-78, 2017.
- ZHANG, Y.; CHU, W.; FOROUSHANI, A.D.; WANG, H.; LI, D.; LIU, J.; BARROW, C.J.; WANG, X.; YANG, W. New gold nanostructures for sensor applications: a review, *Materials Basel*. v.7, 5169–5201. 2014.