

ESTUDO DOS COEFICIENTES DE TRANSFERÊNCIA DE CALOR EM UM PASTEURIZADOR COM TROCADORES TIPO SERPENTINA EM CASCO

F. G. DITCHUN¹, G. RUSSO² e J. A. W. GUT^{2,3}

¹ Departamento de Engenharia de Alimentos, Faculdade de Tecnologia Termomecanica ² Departamento de Engenharia Química, Universidade de São Paulo ³ Food Research Center (FoRC), Universidade de São Paulo E-mail para contato: fer.nanda_ditchun@hotmail.com

RESUMO – A pasteurização é um tratamento térmico brando, aplicado a alimentos líquidos por meio de trocadores de calor, que é dividido em três etapas: aquecimento, retenção e resfriamento. O aquecimento em fluxo contínuo por microondas focalizadas é uma tecnologia que vem sendo estudada por ter potencial para substituir trocadores de calor para promover um aquecimento mais rápido, reduzindo a perda de atributos de qualidade. Este trabalho estuda os coeficientes de transferência de calor envolvidos no processamento térmico assistido por microondas em uma unidade piloto Microwave Lab25-UHT/HTST EHVH nas etapas de pré-aquecimento, retenção e resfriamento. Diferentes condições de processo foram contempladas para a água: vazão do produto (0,4 a 2,0 L/min) e temperatura de processo (60 a 120 °C). Os coeficientes de transferência de calor foram obtidos a partir dos dados experimentais no pré-aquecedor, no resfriador e no tubo de retenção (perda de calor para o ambiente). Este trabalho contribuirá com o desenvolvimento de um modelo de simulação de processo para determinação da distribuição de temperatura e tempo de residência do produto, tendo em vista a avaliação dos efeitos da alta temperatura sobre atributos de segurança e qualidade.

1. INTRODUÇÃO

A pasteurização assistida por micro-ondas é uma tecnologia que vem sendo estudada por ter potencial para substituir trocadores de calor no tratamento térmico de produtos líquidos, por promover a redução do tempo de exposição à alta temperatura no aquecimento, maior eficiência energética e melhora na qualidade do alimento (Chandrasekaran *et al.*, 2013), reduzindo a perda de atributos de qualidade e o sobre-processamento, ao mesmo tempo que atinge os níveis de letalidade desejáveis.

2. OBJETIVO

O objetivo deste trabalho é estudar os coeficientes de transferência de calor nas etapas de pré-aquecimento, retenção e resfriamento em um processo de pasteurização assistido por microondas.

3. MÉTODOS E PROCEDIMENTOS

Para os ensaios experimentais foi usada a unidade piloto Microwave Lab25-UHT/HTST EHVH (MicroThermics, EUA) com seções de pré-aquecimento, aquecimento por micro-ondas, tubo de retenção e resfriamento. Como o objetivo do estudo são os trocadores de calor tipo serpentina em casco e o tubo de retenção, o aquecedor por micro-ondas não foi utilizado nos ensaios.

Figura 1 – Pasteurizador Microwave Lab25-UHT/HTST EHVH (MicroThermics, EUA).

Foi processada água, variando a vazão do produto (0,4 a 2,0 L/min) e temperatura de processo (60 a 120 °C). Termopares registraram as temperaturas de entrada e saída nos trocadores. Propriedades termofísicas da água foram calculadas para as faixas de temperatura estudadas.

Os calores nos lados quente e frio foram calculados pelas Equações 1 e 2, respectivamente. Os subscritos q (quente) e f (frio) indicam os lados do trocador e os subscritos e e s representam entrada e saída.

$$q = \dot{m}_{q} \cdot C_{p,q} \cdot (T_{q,e} - T_{q,s}) \tag{1}$$

$$q = \dot{m}_{f} \cdot C_{p,f} \cdot \left(T_{f,e} - T_{f,s} \right)$$
(2)

em que q é a taxa de transferência de calor (W), m é a vazão mássica do fluido (kg/s), C_p é o calor específico médio do fluido (J/kg.K) e T é a temperatura do fluido (°C). A perda de calor no tubo de retenção corresponde ao balanço de energia para o lado quente de um trocador de calor (Equação 1), considerando o ar ambiente como o lado frio isotérmico.

O coeficiente global de transferência de calor foi calculado pela Equação 3.

$$q = U \cdot A \cdot \Delta \bar{T}_{ln} \tag{3}$$

em que q é a taxa de transferência de calor (W), U é o coeficiente global de transferência de calor (W/m².K), A é a área de referência para transferência de calor (m²) e $\Delta \overline{T}_{ln}$ é a média logarítmica da diferença de temperatura (°C).

O coeficiente global de transferência de um trocador de calor tubular pode ser representado pela Equação 4, levando em consideração as resistências térmicas condutivas e convectivas associadas em série.

$$\frac{1}{U.A_{ref}} = \frac{1}{h_e.A_e} + \frac{e}{k.A_{lm}} + \frac{1}{h_i.A_i}$$
(4)

em que h_i é o coeficiente convectivo do fluido interno ao tubo (W/m².K), h_e é o coeficiente convectivo do fluido externo ao tubo (W/m².K), A_e é a área para troca externa do tubo (m²), A_i é a área para troca interna do tubo (m²), A_{ref} é a área de referência (m²), e é a espessura do tubo (m), k é a condutividade térmica do material do tubo (W/m.K), e A_{lm} é a área logarítmica média do tubo (m). A área de referência adotada foi a área externa da serpentina em contato com o fluido de utilidade.

O número de Reynolds foi calculado pela Equação 5.

$$Re = \frac{d_i \cdot v \cdot \rho}{\mu} \tag{5}$$

em que *Re* é o número de Reynolds (adimensional), d_i é o diâmetro interno do tubo (m), v é a velocidade média de escoamento do fluido (m/s), ρ é a densidade do fluido (kg/m³) e μ é a viscosidade do fluido newtoniano (Pa.s).

E o número de Prandtl foi calculado pela Equação 6.

$$Pr = \frac{\mu \cdot C_p}{k} \tag{6}$$

em que Pr é o número de Prandtl (adimensional), μ é a viscosidade do fluido newtoniano (Pa.s), C_p é o calor específico médio do fluido (J/kg.K) e k é a condutividade térmica do material do tubo (W/m.K).

Foram propostos seis modelos matemáticos que correlacionam o coeficiente global de troca térmica (U) com Reynolds (Re) e Prandtl (Pr), conforme a Tabela 1. Sendo o Modelo F proposto por Coronel *et al.* (2008), a correlação foi apresentada entre U e Re para um trocador de calor helicoidal similar ao estudado neste trabalho. O formato destas correlações deriva das resistências térmicas que compõem o U de um trocador de calor. Os subscritos p e u representam produto e utilidade, respectivamente.

Tabela 1 – Equações propostas que correlacionam o U com Re e Pr.

Modelo	Equação proposta
A	$\frac{1}{U \cdot A} = a + \frac{b}{Re_p^c \cdot Pr_p^f} + \frac{d}{Re_u^e \cdot Pr_u^g}$
В	$\frac{1}{U.A} = a + \frac{b}{Re_p^c \cdot Pr_p^{1/3}} + \frac{d}{Re_u^e \cdot Pr_u^{1/3}}$
С	$\frac{1}{U.A} = a + \frac{b}{Re_p^c} + \frac{d}{Re_u^e}$
D	$\frac{1}{U.A} = a + \frac{b}{Re_p^c \cdot Pr_p^f}$
Е	$\frac{1}{U \cdot A} = a + \frac{b}{Re_p^c \cdot Pr_p^{1/3}}$
F	$\frac{1}{U.A} = a + \frac{b}{Re_p^c}$

4. RESULTADOS E DISCUSSÃO

As Tabelas 2 a 4 mostram os parâmetros ajustáveis dos modelos propostos para as seções de aquecimento, resfriamento e retenção, obtidos a partir da minimização do erro quadrático no cálculo de *U* pela ferramenta Solver do programa MS Excel.

A Tabela 2 apresenta os parâmetros ajustáveis dos modelos matemáticos propostos para a seção de aquecimento. Para o pré-aquecedor, o número de Reynolds do produto variou de $1,5.10^3$ a $1,1.10^4$ e o número de Prandtl do produto variou de 3,1 a 5,4. Nos modelos A, B e C, o número de Reynolds da utilidade variou de $4,9.10^3$ a $1,0.10^4$ e o número de Prandtl da utilidade variou de 1,5 a 3,0.

Tabela 2 – Parâmetros ajustáveis dos modelos matemáticos propostos da seção de aquecimento.

Modelo	а	b	С	d	е	f	g	$\sum Erro^2$	R^2
А	$6,76 \cdot 10^{-5}$	12,4	0,925	5,08	1,00	0,667	0,285	0,0792	0,975
В	$1,83 \cdot 10^{-4}$	4,58	0,865	0,510	0,766			0,133	0,967
С	$5,41 \cdot 10^{-4}$	1,72	0,800	0,00218	0,800			0,202	0,950
D	$1,53 \cdot 10^{-4}$	3,47	0,799			0,336		0,244	0,932
Е	$1,48 \cdot 10^{-4}$	3,44	0,800					0,247	0,929
F	$2,78 \cdot 10^{-4}$	2,04	0,800					0,393	0,913

A Tabela 3 apresenta os parâmetros ajustáveis dos modelos matemáticos propostos para a seção de resfriamento. Para o resfriador, o número de Reynolds do produto variou de $9,1.10^2$ a $1,0.10^4$ e o número de Prandtl do produto variou de 2,7 a 6,6. Nos modelos A, B e C, o número de Reynolds da utilidade variou de $9,3.10^2$ a $1,9.10^3$ e o número de Prandtl da utilidade variou de 5,2 a 11,9.

Tabela 3 – Parâmetros ajustáveis dos modelos matemáticos propostos da seção de resfriamento.

Modelo	а	b	С	d	е	f	g	$\sum Erro^2$	R^2
А	8,42 · 10 ⁻⁵	2,34	0,849	2,77	0,870	0,161	0,140	0,0218	0,990
В	3,35 · 10 ⁻⁵	3,21	0,820	2,82	0,835			0,0408	0,980
С	$6,78 \cdot 10^{-4}$	1,26	0,800	1,05	0,800			0,0203	0,991
D	$2,15 \cdot 10^{-3}$	1,23	0,644			0,325		0,130	0,914
Е	$2,17 \cdot 10^{-3}$	1,27	0,648					0,131	0,912
F	$2,24 \cdot 10^{-3}$	0,378	0,562					0,0726	0,954

A Tabela 4 apresenta os parâmetros ajustáveis dos modelos matemáticos propostos para a seção de retenção. Para o tubo de retenção, o número de Reynolds do produto variou de $2,2.10^3$ a $2,1.10^4$ e o número de Prandtl do produto variou de 1,4 a 3,0.

Modelo	а	b	С	d	е	f	g	$\sum Erro^2$	R^2
D	0,714	103	0,682			0,221		0,150	0,473
Е	0,758	388	0,852					0,157	0,452
F	0,758	219	0,809					0,137	0,521

Tabela 4 – Parâmetros ajustáveis dos modelos matemáticos propostos da seção de retenção.

Os Modelos A, B e C resultaram em melhores ajustes do que os Modelos D, E e F. Esses consideraram a influência dos fluidos de utilidade para a estimação do U nas seções de troca térmica e estes a vazão dos fluidos de utilidade constante e que U depende principalmente da vazão e propriedades do produto.

Os Modelos C e F consideram Pr constante. Os Modelos A, B, D e E consideram Pr para avaliar a influência da temperatura de processo, sendo nos Modelos B e E o expoente de Prfixo no valor de 1/3, baseado na equação de Colburn (Bergman *et al.*, 2015) e nos Modelos A e D estes parâmetros são estimados pela correlação de U. Nas seções de troca térmica, os parâmetros f e g do Modelo A distanciaram do valor proposto pela equação de Colburn, enquanto o Modelo D obteve resultados próximos à 1/3, expoente de Pr proposto para o Modelo E.

A Figura 2 mostra os gráficos referentes aos ajustes dos Modelos D, E e F para as seções de aquecimento, resfriamento e retenção.

Figura 2 – Ajuste dos Modelos D, E e F para as seções de aquecimento, resfriamento e retenção.

5. CONCLUSÃO

O melhor ajuste para o pré-aquecedor foi o Modelo A e para o resfriador foram os Modelos A e C. Comparado com as seções de troca térmica, a seção de retenção apresentou coeficientes de correlação insatisfatórios. O parâmetro a influencia na altura da curva e os parâmetros b e c na curvatura dos modelos propostos.

Valores de U são próximos para vazões baixas e mais afastados quanto maior a temperatura para vazões mais elevadas. Para uma mesma temperatura, os pontos se alinham ao variar a vazão, como se para cada temperatura houvesse um perfil de U. O aumento da temperatura para uma mesma vazão aumenta o Re, pois diminui a viscosidade do produto. Resultados com outros fluidos permitirão verificar a influência da reologia na troca térmica.

Ensaios devem ser realizados para determinação da taxa de transferência de energia no aquecedor por micro-ondas para que o processo possa ser modelado por completo.

6. REFERÊNCIAS

- BERGMAN, T. et al. Fundamentos de transferência de calor e de massa. Tradução. 7. ed. Rio de Janeiro: Grupo Gen LTC, 2015.
- CHANDRASEKARAN, S.; RAMANATHAN, S.; BASAK, T. Microwave food processing-a review. *Food Res. Int.*, v. 52, n. 1, p. 243-261, 2013.
- CORONEL, P.; SIMUNOVIC, J.; SANDEEP, K. P.; CARTWRIGHT, G.D.; KUMAR, P. Sterilization solutions for aseptic processing using a continuous flow microwave system. *J. Food Eng.*, v. 85, p. 528-536, 2008.

7. AGRADECIMENTOS

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), processos 2018/08178-7 e 2013/07914-8.