

AVALIAÇÃO EXPERIMENTAL DO COEFICIENTE EXTERNO DE CONVECÇÃO NO RESFRIAMENTO DE LÍQUIDOS NEWTONIANOS EM TANQUE COM AGITAÇÃO

A. P. SILVA¹, K. A. F. SANCHEZ¹, L. M. MANSO¹, M. A. A. LUCINDO¹, V. S. ROSA¹

¹ Universidade Santa Cecília, Faculdade de Engenharia Química E-mail para contato: arianepazzini@hotmail.com

RESUMO – Os impulsores tipo turbina Rushton são amplamente empregados em processos de transferência de calor e massa em tanques com agitação. A determinação do coeficiente externo de convecção é imprescindível para o cálculo da área de troca térmica de jaquetas, serpentinas e chicanas. O presente estudo visou avaliar a variação temporal do coeficiente ho no resfriamento de líquidos newtonianos em tanque equipado com uma turbina Rushton e chicanas tubulares verticais. Os experimentos foram conduzidos em uma unidade experimental equipada com um tanque com volume de 10 litros, uma turbina Rushton e uma chicana tubular vertical. Utilizou-se líquidos newtonianos durante a agitação e resfriamento. Com os resultados obtidos, verificou-se que o coeficiente externo de convecção no resfriamento possui uma variação temporal devido aos elevados gradientes de temperatura. O modelo empírico proposto para o cálculo do coeficiente de convecção é válido para Reynolds entre 2000 e 50000, com um coeficiente de determinação de 0,78.

1. INTRODUÇÃO

Os tanques com impulsores mecânicos são amplamente utilizados nas indústrias químicas, petroquímicas, farmacêuticas e alimentícias como reatores, decantadores, extratores e destiladores (Rosa, et. al., 2014). O tipo de impulsor mecânico (axial ou radial) irá impactar diretamente no consumo de potência e na transmissão de calor pois o tipo de escoamento altera drasticamente a hidrodinâmica da agitação e, por consequência, a transferência de calor do líquido na mistura (Ameur e Bouzit, 2013). Industrialmente, as turbinas Rushton (impulsor do tipo radial com 6 pás planas) são bastante atrativas para processos em que uma elevada turbulência é requerida, como por exemplo, operações de transferência de calor e massa, flotação e reações químicas entre gás e líquido (Gómez-Días e Navaza, 2004). A área de troca térmica, independente do tipo de trocador de calor utilizado no tanque, é determinada em função dos mecanismos de transmissão de calor. No entanto, a resistência a transferência de calor ocasionada pela condução e radiação são desprezíveis frente a convecção que é função do escoamento (Dhotre, Murthy e Jayakumar, 2006). Desse modo, a área de troca térmica é calculada como função do coeficiente global de transferência de calor (U), o qual é função dos coeficientes de convecção interno (h_i) e externo (h_o) como apresentado na Equação 1.

$$\frac{1}{U} = \frac{1}{h_i} + \frac{1}{h_o} \tag{1}$$

A dificuldade de cálculo na Equação 2 envolve a determinação do coeficiente externo de convecção (h_0) o qual depende de parâmetros como a geometria do tanque e do impulsor mecânico, das propriedades físicas do líquido e da reologia do líquido. Tradicionalmente, o coeficiente h₀ é determinado pelo modelo semi-empírico de Nusselt (Nu) (Equação 2) em função do número de Reynolds (Re), número de Prandtl (Pr) e número de Viscosidade (Vi).

$$Nu = KRe^{a}Pr^{b}Vi^{c}$$
⁽²⁾

O uso da Equação 1 requer que o coeficiente ho presente no número de Nusselt seja constante para uma dada rotação do impulsor mecânico independente se o processo esteja em regime transiente e permanente. Porém, no trabalho de Rosa et. al. (2017) com aquecimento de líquidos newtonianos em tanques utilizando serpentinas em espiral, verificou-se que há uma tendência do coeficiente ho não ser completamente constante em função do tempo.

2. OBJETIVO

O presente estudo teve por objetivo avaliar a variação temporal do coeficiente h_0 no resfriamento de líquidos newtonianos em tanque equipado com uma turbina Rushton e chicanas tubulares verticais. O estudo também contemplou determinar um modelo empírico para o cálculo do coeficiente ho em função do escoamento.

3. MATERIAL E MÉTODO

3.1 Material

Os experimentos foram conduzidos em uma unidade experimental, localizada no Laboratório de Operações Unitárias da Universidade Santa Cecilia. Na Figura 1 está apresenta um fluxograma da unidade com o detalhamento dos seus principais periféricos.

Figura 1 – Fluxograma da unidade Experimental – (1) Banho termostático; (2) Bomba; (3) Válvulas de esfera; (4)Termopar 1 (entrada do fluido); (5) Chicana tubular vertical, (6) Termopar temperatura bulk 1 (tanque); (7) Isolamento térmico; (8) Tanque; (9) Termopar temperatura bulk 2; (10) Termopar temperatura bulk 3; (11)

Impulsor mecânico; (12) Motor elétrico; (13) Termopar 2 (saída do fluido); (14) válvula de esfera; (15)

Rotâmetro:

Nas Figuras 2 e 3 estão apresentados a chicana tubular vertical e a turbina Rushton com 6 pás planas, respectivamente. Como fluido a serem resfriados foram empregados: água destilada, soluções de sacarose com concentrações em massa de 20% e 50% e os mesmos foram empregados na agitação. Como fluido de resfriamento, utilizou-se água destilada que percorreu em sistema fechado um circuito entre a chicana tubular vertical e o banho ultratermostático.

Figura 2 – Chicana tubular vertical de cobre

Figura 3 – Turbina Rushton com 6 pá planas

3.2 Método

O método empregado nesse estudo foi uma operação em batelada e de resfriamento de líquidos em agitação e mistura. Cada líquido (água e soluções de sacarose a 20% e 50%, em massa), foram submetidas a diferentes níveis de rotações da turbina na faixa de 100 rpm a 700 rpm. O líquido no tanque (volume de 10 litros) era aquecido previamente até 50°C por meio de uma resistência elétrica, enquanto, que a água de resfriamento era mantida em recirculação no banho ultratermostático a 15°C com uma vazão de 1,5 litros por minuto. Após as temperaturas de ambos os líquidos estarem nas condições de estudo, a água de resfriamento era direcionada a chicana tubular vertical, onde o resfriamento do líquido em agitação era iniciado. Foram acoplados termopares na entrada e na saída da chicana tubular vertical, bem como foram colocados 3 termopares em posições distintas no interior do tanque. Cada ensaio teve a duração de 40 minutos, de modo, que a cada 1 minuto eram medidas as temperaturas em todos os termopares supracitados. O tanque era isolado com espuma de poliuretano. A sequência de cálculo está na determinação do coeficiente global de transferência de calor (U), coeficiente interno de convecção (h_i) e coeficiente externo de convecção (h_o). Inicialmente aplicou-se a 1^ª lei da termodinâmica no volume de controle (tanque com resfriamento), conforme apresentado na Equação 3.

$$\sum \dot{Q} - \sum \dot{W} + \sum \dot{m}_e \left(h_e + \frac{v_e^2}{2} + gZ_e \right) - \sum \dot{m}_s \left(h_s + \frac{v_s^2}{2} + gZ_s \right) = \frac{dE}{d\theta}$$
(3)

Considerando as seguintes premissas: a) tanque perfeitamente isolado, de modo, que o calor removido do líquido em agitação era completamente transferido para a água de resfriamento na chicana tubular vertical, b) Energia cinética e energia potencial desprezíveis, c) Trabalho do impulsor mecânico desprezível e d) tanque perfeitamente agitado, a Equação 3 com as devidas manipulações algébricas se reduz a:

$$U = \frac{1}{A(T_1 - T_2)} \cdot \ln\left(\frac{T_1 - t_b}{T_2 - t_b}\right) \cdot \left(Mc_p \frac{dt_b}{d\theta}\right)$$
(4)

A Equação 4 não pode ser integrada analiticamente, pois ainda não é possível conhecer se o coeficiente U é uma função do tempo. Desse modo, foi realizada uma discretização na Equação 4, conforme apresentado na Equação 5, e a integração realizada de modo numérico.

$$U^{k} = \frac{1}{A^{k} (T_{1}^{k} - T_{2}^{k})} \cdot \ln \left(\frac{T_{1}^{k} - t_{b}^{k}}{T_{2}^{k} - t_{b}^{k}} \right) \cdot \left\{ \left[M c_{p}^{k} \left(\frac{t_{b}^{k} - t_{b}^{k-1}}{\theta^{k} - \theta^{k-1}} \right) \right] \right\}$$
(5)

O coeficiente hi foi calculado pelo Equação de Gnielinski (1976) a qual é válida para escoamento interno em tubulações (chicana tubular vertical) com Reynolds entre 3.10^3 e 5.10^6 . Por fim, o coeficiente ho, é calculado através da Equação 1 com os resultados encontrados nas Equações 4 e 5 para cada experimento.

$$\frac{h_i D_i}{k} = \frac{(f'/8)(Re - 1000)Pr}{1 + 12,7(f'/8)^{1/2}(Pr^{2/3} - 1)}$$
(6)

4. RESULTADOS E DISCUSSÃO

Inicialmente, verificou-se a influência da agitação e o tempo de operação no coeficiente interno de convecção (h_i). Em todos os ensaios, a água de resfriamento foi conduzida a 1,5 litros por minuto, e por meio da Equação 6, aplicada a cada instante de tempo, verificou-se que o coeficiente h_i permaneceu constante em cada experimento com um valor de 3600 W/m^{2°}C. Desse modo, calculou-se o coeficiente U em cada instante de tempo, através da Equação 5, e por sua vez, o coeficiente h_o foi obtido pela Equação 1. Na Figura 4 está apresentada a curva de variação do coeficiente h_o em função do tempo para o ensaio de resfriamento da solução de sacarose a 50% em massa com uma rotação da turbina em 300 rpm. Observou-se na Figura 4 que houve uma significativa variação do coeficiente h_o com o tempo de resfriamento. O mesmo ocorreu para todos os outros experimentos.

Fenomenologicamente, a rampa de resfriamento é mais brusca quando comparada com a rampa de aquecimento. No início dos experimentos, a transferência de calor é extremamente acentuada, o que provoca gradientes de temperatura significativos no líquido em agitação. Devido a esses gradientes, as propriedades físicas, em especial a viscosidade, sofre uma mudança brusca, o que reflete na mudança do coeficiente h_0 com o tempo. Constatou-se que há um amortecimento da variação do coeficiente h_0 a partir de 25 minutos de experimento, de forma que a função pode ser ajustada exponencialmente (Equação 7).

$$h_o = k_1 e^{k_2 \theta} \tag{7}$$

No entanto, a Equação 7 não é funcional, pois a mesma só pode ser aplicada a uma condição específica de experimento. As constantes k_1 e k_2 devem ser escritas em função do número de Reynolds, de modo, a expandir a aplicação do modelo empírico para o cálculo do coeficiente h_0 .

Figura 4 – Coeficiente h_o em função do tempo para resfriamento de solução de sacarose a 50% com rotação da turbina em 300 rpm

Na Figura 5a foi plotado a variação do coeficiente k1 em função do número de Reynolds (calculado a partir de cada rotação empregada) e na Figura 5b, a relação do coeficiente k₂ pelo número de Reynolds. Ambos os coeficientes, k₁ e k₂, possuíram uma variação similar com o número de Reynolds, sendo, que o ajuste entre os parâmetros é melhor ajustado com uma função logarítmica. Desse modo, a equação 7 pode ser reescrita em função do número de Reynolds, como apresentado na Equação 8, a qual é aplicável para Reynolds entre 2000 e 50000.

$$h_o = [695,79 \ln Re - 3170,1] \cdot exp^{(0,0117 - 0,008 \ln Re)\theta}$$
(8)

Figura 5 – (a) Coeficiente k_1 em função de Reynolds, (b) Coeficiente k_2 em função de Reynolds

5. CONCLUSÃO

Com os resultados obtidos, foi possível concluir que: a) No resfriamento de líquidos newtonianos, devido ao elevado gradiente de temperatura, a variação das propriedades físicas provoca uma mudança do coeficiente externo de convecção com o tempo; b) O modelo empírico obtido para o coeficiente ho segue um modelo exponencial com os seus coeficientes ajustados por funções logarítmicas com o número de Reynolds. A equação é válida para resfriamentos com turbinas Rushton com Reynolds com intervalo de 2000 a 50000 com um coeficiente R² de 0,78.

6. NOMENCLATURA

U	Coeficiente global de transferência de calor (W/m²°C)	k	Passo de integração na equação 5	Re	Número de Reynolds	Q	Fluxo de calor no volume de controle (W)
A	Área de troca térmica (m²)	ср	Calor específico (J/kgK)	Nu	Número de Nusselt	W	Trabalho no volume de controle (W)
T1	Temperatura de entrada na chicana tubular (°C)	hi	Coeficiente interno de convecção (W/m²°C)	μ	Viscosidade dinâmica (Pa.s)	E	Energia no volume de controle (J)
T2	Temperatura de saída na chicana tubular (°C)	ho	Coeficiente externo de convecção (W/m²°C)	ρ	Massa específica (kg/m³)	θ	Tempo do ensaio (min)
tb	Temperatura "bulk" no tanque	f	Fator de atrito	Ν	Rotação (rpm)	М	Massa de líquido (kg)
Pr	Número de Prandtl	Da	Diâmetro do impulsor (m)				

7. REFERÊNCIAS

ROSA, V. S., MORAES, M. S., TONELI, J. T. C. L., MORAES JÚNIOR, D. "External heat transfer coefficient in agitated vessels using a radial impeller and vertical tube baffles". Industrial & Engineering Chemistry Research, 53 (35), p. 13797-13803, 2014;

AMEUR, H., BOUZIT, M. "Power consumption for stirring shear-thinning fluids by two-blade impeller". Energy, 50, p.326-332, 2013;

GÓMEZ-DÍAS, D., NAVAZA, J. M., "Analysis of carbon dioxide gas/liquid mass transfer in aerated stirred vessels using non-newtonian media". Journal of Chemical Technology and Biotechnology, 79, p. 1105-1112, 2004;

DHOTRE, M. T., MURTHY, Z. V. P., JAYAKUMAR, N. S., "Modeling & Dynamic Studies of Heat Transfer Cooling of Liquid in Half-coil Jackets". Chemical Engineering Journal, 118, p. 183-188, 2006;

ROSA, V.S., TAQUEDA, M. E. S., PAIVA, J. L., MORAES, M. S., MORAES JÚNIOR, D. "Nusselt's correlations in agitated tanks using the spiral coil with Rushton turbine and PBT 45° impeller. Comparison with tanks containing vertical tube baffles". Applied Thermal Engineering, 110, p. 1331-1342, 2017;