

BIRREFRINGÊNCIA INDUZIDA POR ESCOAMENTO PARA OBTENÇÃO DO CAMPO DE TENSÕES EM POLÍMEROS FUNDIDOS

T.P.REIS¹, A.R.SECCHI², A.M.CASTRO² e J.O.PEREIRA²

¹ Universidade Federal do Rio de Janeiro, Escola de Química
² Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Química E-mail para contato: thayna.preis@hotmail.com

RESUMO - Nas operações industriais com polímero fundido, o processamento é afetado diretamente por suas propriedades reológicas, sendo necessário conhecer o comportamento desses materiais nas condições práticas de escoamento para ser possível prever e avaliar a morfologia e as propriedades finais do material. Dessa forma, várias técnicas vêm sendo empregadas, com destaque para a birrefringência induzida pelo escoamento (Flow Induced Birefringence), observada durante o processamento de polímero fundido no reômetro multipasse capilar de duplo pistão (MultiPass Rheometer) acoplado a um módulo óptico. Neste trabalho, foi analisado o comportamento de um grade de polietileno linear de baixa densidade (LLDPE) fundido durante o escoamento através da geometria slit-die com 1,5 mm de comprimento do canal e 10,0 mm de profundidade no Reômetro Multipasse MPR5S em três temperaturas (140°C, 150°C e 160°C) e três velocidades diferentes dos pistões: 0,1, 0,25 e 0,5 mm/s. Foi possível observar que com o aumento da temperatura houve uma redução na quantidade de franjas obtidas para a mesma velocidade de escoamento bem como uma redução nos valores de diferença de pressão. Em seguida, o software GIMP foi utilizado para a determinação do perfil do módulo da primeira diferença de tensões normais ao longo da linha central do escoamento para três velocidades de escoamento diferentes, mostrando que a metodologia via processamento das imagens de birrefringência é adequada e acurada para esse fim.

1. INTRODUÇÃO

O uso de produtos de origem polimérica vem se tornando uma necessidade cada vez mais constante na sociedade moderna, desde a produção de simples embalagens até a produção de materiais que requerem uma maior complexidade na sua utilização, como órgãos artificiais. Com esta finalidade, polímeros como polietileno, polipropileno, policarbonato e poliestireno são processados em elevadas temperaturas e são submetidos a altas taxas de deformação, gerando assim uma orientação e alongamento de suas cadeias, de forma que seu comportamento reológico deve ser bem compreendido. Os softwares desenvolvidos atualmente especializados em modelagem, simulação e otimização de processos e escoamento de polímeros não atendem às necessidades requeridas pelos processos produtivos. Desta forma, a possibilidade de utilizar a fluidodinâmica computacional na avaliação destes processos pode, além de outros benefícios, gerar uma redução significativa dos custos do

processo. Para uma compreensão científica do processamento de polímeros, o fluido fundido é submetido a um escoamento simples por cisalhamento sob condições de temperatura controlada, que pode ser realizada utilizando-se reômetros rotacionais ou extensionais.

Este trabalho tem por objetivo geral compreender o comportamento desses materiais durante condições reais de processamento. Assim, insere-se neste contexto a técnica de birrefringência induzida por escoamento (FIB: *Flow Induced Birefringence*), que possui grande potencial de aplicação na área de polímeros, porém ainda relativamente pouco explorada. Entre as principais características dessa técnica, pode-se citar: a quantidade observada ou medida é efeito da orientação molecular e permite a obtenção do perfil de tensões em toda a região de análise. O campo de tensão do escoamento é quantificado em termos da diferença de tensão principal (PSD: *Principal Stress Diference*), que na linha central do escoamento pode ser escrita conforme mostrado na Equação (1).

$$|PSD| = |\tau_{11} - \tau_{22}| = |N_1| = \frac{k\lambda}{|C|d}$$
(1)

Sendo $|N_1|$ o módulo da primeira diferença de tensões normais, k = 0, 1, 2, ..., a ordem da franja, λ o comprimento de onda da luz polarizada que incide sobre o meio birrefringente, *C* o coeficiente de tensão óptico que estabelece a relação entre o tensor tensão e o tensor índice de refração e *d* o comprimento do meio anisotrópico (maiores informações em COLLINS e MACKLEY, 2005; FARIAS et al., 2014; LEE e MACKLEY, 2001).

Neste trabalho são realizadas a obtenção e análise de imagens de birrefringência induzida por escoamento no MPR5S de uma amostra de polietileno linear de baixa densidade, de forma que seja possível avaliar o comportamento reológico do material, bem como, o estudo e desenvolvimento de modelos constitutivos para a simulação de escoamento de fluidos complexos e a validação de modelos fenomenológicos para a simulação do escoamento de fluidos viscoelásticos.

2. METODOLOGIA

As imagens de birrefringência obtidas neste trabalho foram geradas através de experimentos realizados no Reômetro Multipasse (MPR: *MultiPass Rheometer*). O MPR (Figuras 1.a, 1.b, 1.c) é um reômetro capilar de duplo pistão, desenvolvido por Mackley e colaboradores, (MACKLEY e HASSEL, 2011), *University of Cambridge* (UK). A etapa de carregamento da amostra no MPR foi realizada conforme descrito em Farias *et al.* (2014). A tensão é aplicada na amostra através da movimentação dos pistões, axialmente opostos, contra a amostra, forçando seu movimento pela seção de teste, localizada na região central do equipamento. Em seguida, a birrefringência induzida é capturada por uma câmera de alta resolução e as imagens obtidas na região de diferença de pressão constante são tratadas no software GIMP (GNU *Image Manipulation Program*).

Figura 1 – Reômetro Multipasse

a) Visão geral do equipamento

b) Geometria slit-die

c) Montagem dos barris do equipamento

O fato de o escoamento ter sido inteiramente filmado com uma câmera de alta resolução, garantiu assim a captação das imagens de birrefringência. As imagens obtidas durante o período de diferença de pressão constante foram posteriormente processadas com o software GIMP (GNU *Image Manipulation Program*), que permite a medição da distância dos centros das franjas escuras ao longo da linha central do escoamento e, consequentemente, a *o*btenção do campo de tensões e a determinação da primeira diferença de tensão normal na linha central do escoamento. O período de diferença de pressão constante foi utilizado para o processamento das imagens pois ele garante que o escoamento esteja desenvolvido e que os padrões de franjas brilhantes e escuras estejam totalmente estabelecidos.

As temperaturas utilizadas no experimento foram: 140°C, 150°C e 160°C; a direção do escoamento através da geometria *slit-die* foi de baixo para cima em diferentes velocidades dos pistões (0,1, 0,25 e 0,5 mm/s); para a obtenção dos resultados numéricos foi considerado

 $C = 2,2 \times 10^{-9} \text{ Pa}^{-1}$ para o polietileno e utilizada luz polarizada monocromática de comprimento de onda de 514 nm.

3. RESULTADOS

A Figura 2 mostra o comportamento da queda de pressão na *slit-die* em função do tempo para os experimentos realizados na temperatura intermediária de 150°C. Observa-se que os experimentos de menor velocidade apresentam períodos de estado estacionário mais longos, permitindo assim a obtenção de um maior número de imagens em estado estacionário. Apesar de apresentar um período de diferença de pressão constante menor, a alta capacidade de captura de quadros da câmera utilizada permitiram imagens de boa qualidade, garantindo assim uma análise satisfatória das imagens.

Figura 2 – Queda de pressão a 150°C

Figura 3 – Queda de pressão a 0,25mm/s

A Figura 3 mostra a primeira diferença de tensão normal ao longo da linha central do escoamento na velocidade intermediária de 0,25 mm/s. Observa-se que, com o aumento da temperatura, há uma redução nos valores de diferença de pressão ao longo da linha central do escoamento. Isso ocorre pois o aumento da temperatura proporciona a redução da viscosidade do fundido.

Algumas das imagens obtidas durante o período de diferenças de pressão constante são exibidas nas Figuras 4, 5 e 6 nas suas respectivas velocidades. Elas foram utilizadas para a contagem dos padrões de franjas no eixo central do escoamento. A numeração das franjas (k) foi baseada no trabalho de Scelsi (2009). É possível visualizar as zonas de maiores e de maiores tensões como áreas escuras localizadas, respectivamente, nos lados das inserções da fenda e na entrada na fenda nas Figuras 4, 5 e 6.

Como esperado, a queda de pressão total através da *slit-die* e o número observado de franjas aumentou com o aumento da velocidade dos pistões e nenhuma instabilidade ou comportamento anormal foi encontrado. Em cada experimento um total de 15 imagens foram analisadas usando a metodologia proposta por Castro *et al.* (2017).

Figura 4 — Numeração das franjas (k) a 140°C. Em (a) 0,1; (b) 0,25; (c) 0,5 mm/s.

Figura 5 — Numeração das franjas (k) a 150°C. Em (a) 0,1; (b) 0,25; (c) 0,5 mm/s.

Figura 6 — Numeração das franjas (k) a 160°C. Em (a) 0,1; (b) 0,25; (c) 0,5 mm/s.

A numeração das franjas (k) foi realizada de acordo com o seguinte raciocínio: k = 0 longe da região de entrada e atinge um ponto máximo na entrada da fenda (k = 3 na Figura 4a, k = 5 na Figura 4b, k = 10 na Figura 4c).

O módulo da primeira diferença de tensões normais ($|N_1|$) foi obtido partindo-se da Equação 1 e da contagem das franjas escuras a partir do *software* GIMP. Esta quantificação resultou no gráfico visualizado na Figura 7, onde é mostrada a posição *x*=0 como a região de entrada da fenda. Percebe-se um comportamento padrão para as três velocidades testadas, onde na região de entrada da fenda predomina a resposta não linear do material, visto que $|N_1|$ aumenta de forma acentuada nesta região até o ponto de cela, observado nas Figuras 4, 5 e 6. Após este ponto, as tensões relaxam ao longo da linha central. A região escura na saída da fenda, observada como um círculo preto nas imagens das Figuras 4, 5 e 6, é a região onde há a troca da direção principal do escoamento de forma que τ_{yy} e τ_{xx} se tornam iguais e o $|N_1|$ é igual a zero.

Figura 7 – $|N_1|$ em função da linha central do escoamento para as três velocidades estudadas

(b) sob as três temperaturas de teste.

4. CONCLUSÃO

De acordo com os resultados obtidos pelo experimento, foi possível verificar a dependência não linear do comportamento do padrão das franjas com o aumento da velocidade do pistão. Adicionalmente, foi comprovado que a metodologia para a determinação da posição dos centros das franjas escuras ao longo da linha central do escoamento a partir do software GIMP é adequada e apresentou resultados coerentes com o esperado, permitindo assim a obtenção do perfil do módulo da primeira diferença de tensões normais ao longo da linha central do escoamento. Finalmente, pode-se verificar que os experimentos reo-ópticos possuem grande potencial para a compreensão das propriedades viscoelásticas de fluidos poliméricos em condições reais de processamento, o que é importante para a melhoria de equipamentos industriais e otimização de processos industriais.

6. REFERÊNCIAS

- CASTRO, A.M., PEREIRA, J.O.; FARIAS, T.M.; SECCHI, A.R.; CARDOZO, N.S.M., "Application of the GIMP software in the analysis of birefringence images obtained in a multipass rheometer", *Rheol. Acta*, v.57, p.113 - 126, 2017.
- COLLIS, M, MACKLEY, M. The melt processing of monodisperse and polydisperse polystyrene melts within a slit entry and exit flow, *J. Non-Newtonian Fluid Mech.* v. 128, p. 29–41, 2005.
- FARIAS, T.M., BUTLER, S., SECCHI, A. R., CARDOZO, N.S.M. "Utilização da técnica de birrefringência em reômetro multipasse para a diferenciação de grades de poliestireno cristal", *Polímeros*, v. 24, n.5, p. 596-603, 2014.
- LEE, K., MACKLEY, M.R., "The application of the multi-pass rheometer for precise rheooptic characterisation of polyethylene melts", *Chem. Eng. Sci.*, v. 56, n. 19, p. 5653– 5661, 2001.
- MACKLEY, M.R.; HASSELL, D.G. The multipass rheometer a review, J. Non-Newtonian Fluid Mech., v. 166, n. 9-10, p. 421–456, 2011.