

SIMULAÇÃO DO USO DO LÍQUIDO IÔNICO 1-BUTIL-3-METILIMIDAZÓLIO-TETRAFLUOROBORATONO PARA PRODUÇÃO DE BIOETANOL ANIDRO COM O ASPEN PLUS

L. S. FELIX¹, M. M. VIEIRA¹, V.C.V. MEIRELES¹, E. J. MELO² e J. I. S. SILVA¹

¹ Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Ciência e Tecnologia

² Universidade Estadual de Campinas, Faculdade de Engenharia Química E-mail para contato: lidsfelix@gmail.com

RESUMO – Os biocombustíveis apresentam-se no cenário global como uma fonte alternativa de energia para os combustíveis fósseis, se destacando pelo caráter renovável e baixos índices de emissão de partículas poluentes ao ambiente. A produção de bioetanol é proveniente do processo de fermentação, no qual é gerada uma mistura multicomponente, de onde o bioetanol anidro é separado. Para obtêlo são necessárias operações como a destilação extrativa, em que solventes são adicionados a fim de promover a "quebra" do azeótropo existente entre o etanol e água. Neste trabalho o líquido iônico [BMIM][BF4] foi utilizado com solvente. A partir do uso da ferramenta computacional Aspen Plus®, simulações do processo de destilação extrativa de uma mistura multicomponente composta por etanol, água, ácido acético e álcool isoamílico obteve-se bioetanol anidro. A performance do solvente foi realizada analisando-se os parâmetros operacionais da coluna extrativa, como a razão de refluxo, taxa de destilado e a vazão de solvente. Os resultados obtidos para o 1-butil-3-metilimidazólio-tetrafluoroboratono foram de grau de pureza de 99,7% em massa com um aproveitamento mínimo de 75% do bioetanol que é alimentado na coluna extrativa.

1. INTRODUÇÃO

O cenário mundial requer a utilização de novas formas de energia que atendam a economia e em especial as exigências ambientais de modo sustentável. Neste contexto, ressalta-se a aplicabilidade do biocombustível para suprir tal demanda. Além de ser oriundo de qualquer biomassa, é um combustível renovável e emite menores quantidades de partículas poluentes ao ambiente (MASSOM *et al.*, 2015).

O bioetanol produzido no Brasil é gerado a partir da biomassa de cana-de-açúcar. Uma das etapas fundamentais para a produção de bioetanol é a fermentação na qual é gerado o leite de levedura e o vinho delevedurado (ZANARDI e JÚNIOR, 2016). O vinho gerado no processo de fermentação apresenta natureza multicomponente. Desse material impuro, o bioetanol anidro é separado em grau de pureza de 99,6% em massa, conforme o Regulamento Técnico ANP n°3/2011, por meio da destilação extrativa. O bioetanol anidro tem sido de

grande interesse em indústrias químicas devido ao seu potencial como solvente para muitos processos (ZUBIR et al., 2017).

Na destilação extrativa, um solvente é inserido ao sistema, alterando a volatilidade relativa dos componentes, a fim de impedir a formação do azeótropo. Tal processo se destaca pelo seu baixo consumo de energia (ZHU et al., 2016).

Há inúmeros solventes que podem ser aplicados ao sistema bioetanol/água, dentre eles têm-se os líquidos iônicos (LI), chamados de solventes verdes, são constituídos por cátions orgânicos carregados, combinados a ânions orgânicos ou inorgânicos, os quais resultam em uma alteração físico-química, conferindo aos mesmos algumas propriedades físicas importantes, como: estabilidade térmica, alta solvatação, não são inflamáveis ou voláteis, além de ter ponto de fusão inferior a 100°C (HAGHIGHI e NIKOOFAR, 2016; EL-NAGAR et al, 2017).

Segundo Ullmann e Elvers (2011) os líquidos iônicos são adequados como material de arraste para grande variedade de sistemas azeotrópicos e que se a água faz parte da mistura azeotrópica, os fatores de separação podem ser alcançados satisfatoriamente, uma vez que os líquidos iônicos são geralmente materiais higroscópicos com uma forte afinidade com a água.

Dessa forma, o presente trabalho, teve como objetivo a da obtenção de bioetanol anidro com uso do solvente [BMIM][BF4] através de simulações do processo de destilação extrativa, utilizando o simulador Aspen Plus®.

2. FORMULAÇÃO DO PROBLEMA

Neste trabalho, foi utilizado o solvente líquido iônico 1-butil-3-metilimidazóliotetrafluoroborato [BMIM][BF4]. Os cálculos realizados para este trabalho são representados pelo modelo termodinâmico NRTL (Non-Randow Two-Liquid). A mistura multicomponente estudada é composta por etanol, água, ácido acético e álcool isoamílico, e os dados do sistema foram adaptados baseando-se no trabalho da Matugi (2013) como apresentado na Tabela 1.

Mistura multicomponente	Fração mássica (Matugi, 2013)	Fração mássica (Este trabalho)
Água	0,622519	0,876000
Etanol	0,376399	0,129000
Álcool isoamílico	0,000841	0,000740
Ácido acético	-	0,000920

Os parâmetros operacionais utilizados foram ajustados em uma série de simulações para obtenção dos que mais se adequaram ao comportamento do sistema. Para a coluna de destilação simples, foram baseados em Matugi (2013), e para coluna de destilação extrativa

no trabalho de Rocha *et al.* (2016). Tais parâmetros são apresentados nas Tabelas 2 e 3, e foram mantidos para as simulações do sistema com o solvente estudado.

Especificações	Matugi (2013)	Presente trabalho
Número de estágios de equilíbrio	7	15
Pressão da coluna isobárica (bar)	1	1,0
Condensador	Total	Total
Refervedor	Ketlle	Kettle
Razão de refluxo	4,5	4
Estágio de alimentação	3	12
Vazão de alimentação (kg/h)	28535	28535
Temperatura de Alimentação (K)	360	360

Tabela 3 - Parâmetros de Operação da Coluna Extrativa (Coluna 2).				
Especificações	(ROCHA, et al. 2016)	Presente trabalho		
Temperatura de alimentação do solvente (K)	353,15	360		
Pressão de Alimentação do solvente (bar)	1 bar	1,5 bar		
Condensador	Total	Total		
Número de estágios	24	35		
Estágio de alimentação do solvente	4	3		
Estágio de alimentação da mistura	12	33		

Na Figura 1 um fluxograma de representação do processo pode ser verificado.

Refervedor

Figura 1 - Representação do processo de obtenção de bioetanol anidro no Aspen Plus®.

Kettle

Kettle

Foi necessário à inserção das propriedades referentes ao líquido iônico no simulador *Aspen Plus*®, por meio dos módulos *Pseudocomponent* e *Dechema*, como são apresentados na Tabela 4.

Tabela 4 – Dados inseridos n	no Aspen Plus®) para a simulaç	ão com o	[BMIM][BF4]

Dados utilizados	Valores	Referência
Temperatura de Ebulição (K)	495,2	Zhu (2017)
Densidade (kg/m ³)	1190,0	Souza <i>et al.</i> (2018)
Massa molar (g/mol)	226,0	Zhu (2017)
g _{ij} (J/mol)	5406,9	Zhu (2017)
g _{ji} (J/mol)	8301,9	Zhu (2017)
α	0,3	Zhu (2017)

Com a finalidade de avaliar a viabilidade do solvente proposto neste trabalho, foram fixadas as condições padrões que garantissem um processo viável, desta forma fixou-se o grau de pureza do bioetanol anidro em no mínimo 99,7% em massa e um aproveitamento mínimo de 75% do bioetanol que é alimentado na coluna de destilação extrativa. A partir de tais condições, manipulou-se a taxa de destilado, razão de refluxo e vazão de solvente até que as condições necessárias fossem atendidas no sistema proposto.

3. RESULTADOS

Com base nas simulações é possível observar o comportamento dinâmico da temperatura e da fração mássica das fases líquida e vapor ao longo dos estágios da coluna de destilação extrativa como apresentado na Figura 2.

Analisando a coluna extrativa, coluna 2, pode-se analisar o comportamento da temperatura e das frações líquidas e de vapor em função do número de estágios da coluna. Nota-se que a temperatura de trabalho da coluna é mantida superior a temperatura do ponto azeotrópico (cerca de 78,2 °C), o que implica na quebra do azeótropo por esse solvente. O pico, expressado no estágio 3, é resultante da corrente de alimentação da mistura etanol-água, que entra a uma temperatura de 79,3 °C. Suplementa-se ainda que, no estágio 33, ocorre a alimentação do líquido iônico que entra na coluna extrativa e no estágio 35, tende-se a apresentar a maior temperatura da coluna devido a presença do refervedor. As frações líquidas

e de vapor comfirmam a quebra do azeótropo, devido a apresentar maiores frações para o etanol no produto de topo e maiores frações de água no produto de fundo.

Figura 3 - Comportamento da pureza do bioetanol, no topo da coluna extrativa, em função da variação da a) vazão de solvente, b) razão de refluxo e c) taxa de destilado no sistema alimentado com [BMIM][BF4].

De acordo com a Figura 3a, nota-se que a vazão do solvente está diretamente relacionada com a concentração de etanol anidro obtido no topo da coluna extrativa. Conforme se aumenta a vazão de solvente há também um aumento no grau de pureza do etanol presente no destilado. Em termos numéricos, o sistema atinge 99,7% de concentração mássica de bioetanol com uma vazão de 7000 kg/h do líquido iônico, tendendo a tornar-se constante a pureza para vazões maiores, visto que a extração que ocorre no processo entra em estado de saturação.

Conforme a razão de refluxo é aumentada, há uma elevação na concentração mássica de bioetanol anidro no topo da coluna extrativa. No sistema, o produto atinge um valor 0,9950 de pureza para valor de razão de refluxo igual a 1,5, sendo que partir deste valor, a concentração mássica de bioetanol se estabiliza em torno de 0,9961. Portanto, razões de refluxo maiores levam a um maior enriquecimento do produto, sendo este o comportamento esperado, haja visto que a razão de refluxo é definida como a razão entre o líquido que retorna à coluna, vindo do condensador, pela vazão de destilado obtida. Logo, quanto mais líquido retorna, mais enriquecido será o produto e maior será a razão de refluxo. Porém, razões de refluxo maiores demandam uma maior carga térmica dos refervedores, tornando mais caro o produto final.

Diferentemente dos comportamentos apresentados pela vazão de solvente e razão de refluxo, o aumento da taxa de destilado reduz a concentração mássica de etanol no destilado. Para a taxa igual a 1000 kg/h, a pureza do bioetanol anidro apresenta valor igual a 0,9993. Observa-se que a concentração de bioetanol no topo permanece quase que constante para valores de razão de destilado no intervalo de 1000 a 2000 kg/h. Já para taxa de destilado de 3000 kg/h a diante, há uma queda acentuada na pureza de bioetanol anidro, portanto, para a obtenção de bioetanol anidro com concentração de 99,7% em massa deve-se considerar o intervalo de 1000 a 2000 kg/h.

4. CONCLUSÃO

A partir das simulações realizadas com o Aspen Plus® e utilizando o líquido iônico [BMIM][BF4] como solvente, foi possível identificar o ponto ótimo de cada variável e os melhores parâmetros para a destilação extrativa e consequentemente a obtenção do bioetanol

com elevado grau de pureza e com porcentagem de aproveitamento de 75% do bioetanol que é alimentado na coluna de destilação extrativa. Apesar das simulações mostrarem que, nas especificações previamente determinadas, é possível a obtenção do bioetanol com um solvente que não contribui para poluição atmosférica e com considerável eficiência de separação, a realização de uma análise de viabilidade técnica e econômica para avaliação do seu uso industrialmente é uma necessidade.

5. REFERÊNCIAS

- EL-NAGAR, R.A.; NESSIM, M.; ABD EL-WAHAB, A.; IBRAHIM, R.; FARAMAWY, S.; Investigating the efficiency of newly prepared imidazolium ionic liquids for carbon dioxide removal from natural gas. *Journ. of Mol. Liq.*, v. 237, p. 484-489, 2017.
- HAGHIGHI, M.; NIKOOFAR, K. Nano TiO2/SiO2: An efficient and reusable catalyst for the synthesis of oxindole derivatives. *Journ. of Sau. Chem. Soc*, v. 20, p. 101-106, 2014.
- MASSON, S. I.; COSTA, G. H.; ROVIERO, J. P.; FREITA, L. A.; MUTTON, M. A.; MUTTON, M. J.R. Produção de bioetanol a partir da fermentação de caldo de sorgo sacarino e cana-de-açúcar. *Ciê. Rur.*, v. 45, p. 1695 1700, 2015.
- MATUGI, K. Produção de etanol anidro por destilação extrativa utilizando soluções Salinas e glicerol. *Diss*. UFSCar, 2013.
- ROCHA, L. B.; MOREIRA, W. M.; LIMA, O. C. M. Simulação Rigorosa de Colunas de Destilação em Aspen Plus® para Produção de Etanol Hidratado e Etanol Anidro. *An. do III Enc. de Pes da Fateb*, v. 2, p. 491-511, 2016.
- SOUZA, W. L. R.; SILVA, C. S.; MELEIRO, L. A. C.; MENDES, M. F.; CHEM, J. Vaporliquid equilibrium of the (water + ethanol + glycerol) system: Experimental and modelling data at normal pressure. *Therm.*, v. 67, p. 106–111, 2013.
- ULLMANN, F.; ELVERS, B. Ullmann's encyclopedia of industrial chemistry. 7 ed., v. 40, Weinheim, Germany: Wiley-VCH, 2011.
- ZANARDI. S. M.; JUNIOR, F. C. E. Tecnologia e perspectiva da produção de etanol no Brasil. *Rev. Lib.*, v. 17, p. 01-118, 2016.
- ZHU, Z.; RIA, Y.; LI, M.; JIA, H.; WANG, Y. Extractive distillation for ethanol dehydration using imidazolium-based ionic liquids as solvents. *Chem. Eng. and Proc.*, v. 109, p. 190–198, 2016.
- ZUBIR, M. A.; RAHIMI, A. N.; ZAHRAN, M. F. I.; SHAHRUDDIN, M. Z.; IBRAHIM, K. A.; HAMID, M. K. A. Systematic design of energy efficient extractive distillation column for azeotrope mixture. *En. Proc.*, v. 142, p. 2636-2641, 2017.