

MODELOS MATEMÁTICOS AJUSTADOS A CINÉTICA DE SECAGEM DE MÍNERIOS DE FERRO E CROMO

O. B. Matos^{1*}, A. F. B. Ferreira², M. D. C. Almeida¹ e P. H. F. Araújo¹

¹ Universidade do Estado do Amapá, Colegiado de Engenharia Química, Macapá-AP, Brasil
² Universidade Federal do Ceará, Departamento de Engenharia Química, Fortaleza-CE, Brasil
*E-mail para contato: tonny-barbosa@hotmail.com

RESUMO – O objetivo do presente trabalho é estudar a secagem dos minérios de ferro e cromo – oriundos da Cidade de Santana, Estado do Amapá, região Norte do Brasil – para avaliação da influência da temperatura e de modelos matemáticos de secagem. Os experimentos foram realizados em uma estufa por quase 3 horas e em temperaturas de 100 a 200 °C. Os modelos foram ajustados à secagem experimental com auxílio do software *STATISTICA* e adotando-se o método de mínimos quadrados para analisar qual modelo melhor se assemelha aos dados experimentais, comparando os valores de coeficiente de determinação (R^2), de erro médio relativo (*EMR*), de erro médio estimado (*EME*) e da tendência de distribuição dos resíduos. A partir dos resultados obtidos, o modelo de *aproximação de difusão* foi o melhor para o minério de ferro (em todas as temperaturas) e de cromo (em T = 150 e 200 °C). Para a secagem do minério de cromo a 100 °C, o melhor modelo foi o de *Henderson e Pabis*. Ambos os modelos matemáticos obtiveram R^2 superior a 99,7%, *EMR* inferior a 10% e tendência tipo aleatória.

1. INTRODUÇÃO

O Brasil é um dos países com maiores reservas de minério do mundo, apresentando rochas contendo hematita (Fe₂O₃), magnetita (Fe₃O₄) e cromita (FeO·Cr₂O₃). Segundo Carvalho (2014), o minério de ferro é um desses tipos de minério, que vem sendo utilizado na indústria de cimento, em estradas, na produção de veículos e fios elétricos. Mas, sobretudo, em siderurgias (mais de 90%), pois é a partir dele que se obtém o Ferro metálico para produção do aço. Já a cromita ou minério de cromo é usado para produção de ligas de ferro-cromo, aço inoxidável e ligas especiais por propiciar maior resistência à oxidação, a corrosão e a fadiga (GONÇALVES, 2001). Uma das etapas importantes do beneficiamento de qualquer minério é a secagem, que pode interferir na comercialização e nas suas características devido a granulometria, umidade, teor de ferro e impurezas associadas ao material, uma vez que o minério fica muito tempo exposto às intempéries climáticas. Desta forma, o objetivo deste trabalho é estudar a secagem dos minérios de ferro e de cromo oriundos do Estado do Amapá, para avaliar a secagem sob a faixa de temperatura de 100 a 200 °C e também para predizer qual modelo matemático melhor se ajusta aos dados experimentais da secagem dos minérios.

2. METODOLOGIA

Os experimentos foram realizados na Universidade do Estado do Amapá-UEAP. As amostras foram obtidas a partir de uma mina presente na cidade de Santana, que está localizada a 20 km do centro da capital. A metodologia recomendada pela ASABE (2010) foi usada para determinar o teor de água de equilíbrio presente nas amostras. Ambos os minérios de ferro e cromo foram acondicionados em uma estufa e mantidos a 103 ± 2 °C por 24 horas. Após a obtenção do teor de água, a secagem foi realizada em uma estufa modelo 403/5 N, marca Nova Ética, nas temperaturas de 100, 150 e 200 °C. Para o minério de ferro, a média das massas secadas foram 10,013 g (100 °C), 10,002 g (150 °C) e 10,005 g (200 °C) e para o minério de cromo as médias das massas foram: 10,28 g (100 °C), 10,002 g (150 °C) e 10,001 g (200 °C). Ressalta-se que as secagens foram feitas em triplicata.

Durante o processo de secagem é necessário conhecer parâmetros para construir as isotermas de secagem e compreender melhor o processo. Assim, avaliou-se a umidade dos minérios em base seca (X_{bs} – Equação 1), em base úmida (X_{bu} – Equação 2) e pela razão de umidade (RU – Equação 3), pois as partículas que os compõem não apresentam formas/tamanhos iguais.

$$X_{bs} = \frac{M_w}{M_{sc}} \tag{1}$$

$$X_{bu} = \frac{M_w}{M_t} \tag{2}$$

$$RU = \frac{X - X_e}{X_o - X_e} \tag{3}$$

onde: M_w é a massa de água em um dado tempo de secagem; M_{sc} equivale a massa seca após um período de 24 horas; M_w é a diferença entre a massa secada em um dado instante t (M_t) menos a massa da amostra seca final (M_{sc}) ou massa de equilíbrio; X representa a umidade absoluta; X_e é a umidade em equilíbrio e X_o é a umidade inicial.

Modelos matemáticos (Equações 4-8) foram ajustados a razão de umidade experimental em função do tempo, utilizando o software *STATISTICA*[®] e adotando-se o método de mínimos quadrados para obtenção dos dados de regressão.

$$RU = exp(-kt) \tag{4}$$

$$RU = exp(-kt^n) \tag{5}$$

(4) Newton; (5) Page; (6) Henderson e Pabis; (7) Aproximação de difusão; (8) Exponencial de dois termos.

3. RESULTADOS E DISCUSSÕES

Os dados obtidos na secagem dos minérios (média da triplicata), em diferentes temperaturas, são apresentados na Figura 1.

Para todas as temperaturas, os dados experimentais da Figura 1 concordam com o padrão observado por Geankoplis (1998). O incremento da temperatura provoca uma maior retirada de água e os minérios perdem mais umidade no início da secagem, já que a quantidade de água livre é maior na superfície das amostras do que no seio delas. As massas dos minérios precisam de pouco tempo para se estabilizarem (não possuem material orgânico), bem diferente de biomassas e outros alimentos. Nas Tabelas 3-8 são reportados os dados obtidos com os ajustes dos modelos em relação ao coeficiente de determinação (R^2), ao erro médio relativo (*EMR*), ao erro médio estimado (*EME*) e ao tipo de tendência observada das distribuições dos resíduos.

Modelo	Coeficientes e constantes	$R^{2}(\%)$	EMR (%)	EME	Tendência
Newton	k = 0,9948	99,4793	48,5212	28,3327	Tendenciosa
Pages	k = 0,2094, n = 0,75775	99,8681	21,9605	4,9976	Tendenciosa
Henderson e Pabis	<i>a</i> = 0,9761, <i>k</i> = 0,1147	99,5101	45,5672	25,8252	Tendenciosa
Aproximação de difusão	a = 0,8831, k = 1499, b = 0,1516	99,8785	7,3771	0,5590	Aleatória
Exponencial de dois termos	<i>a</i> =0,2540, <i>k</i> = 0,3599	99,7980	25,0962	10,1487	Tendenciosa

Tabela 3 – Valores de R^2 , *EMR*, *EME* e a tendência para o minério de ferro a T = 100 °C.

Modelo	Coeficientes e constantes	$R^{2}(\%)$	EMR (%)	EME	Tendência
Newton	<i>k</i> = 0,3069	99,5740	99,2752	98,5599	Tendenciosa
Pages	k = 0,8201, n = 0,4552	99,9047	47,6621	22,9497	Tendenciosa
Henderson e Pabis	<i>a</i> = 0,9973, <i>k</i> = 0,3063	99,5744	99,2669	98,5436	Tendenciosa
Aproximação de difusão	a = 0,9408, k = 0,3763, b = 0,0527	99,9799	12,3596	1,5283	Aleatória
Exponencial de dois termos	<i>a</i> = 0,3681, <i>k</i> = 0,6294	99,6806	96,8496	93,8653	Tendenciosa

Tabela 5 – Valores de R^2 , *EMR*, *EME* e a tendência para o minério de ferro a T = 200 °C.

Modelo	Coeficientes e constantes	$R^{2}(\%)$	EMR (%)	EME	Tendência
Newton	<i>k</i> = 0,3439	99,6530	98,2019	96,4518	Tendenciosa
Pages	k = 0,9623, n = 0,4155	99,9572	25,7458	6,6506	Tendenciosa
Henderson e Pabis	<i>a</i> = 0,9983, <i>k</i> = 0,3435	99,6531	98,1919	96,4324	Tendenciosa
Aproximação de difusão	a = 0,93115, k = 0,4377, b = 0,0699	99,9931	9,0269	0,8253	Aleatória
Exponencial de dois termos	<i>a</i> = 0,3875, <i>k</i> = 0,6716	99,7296	93,6637	87,8603	Tendenciosa

100010 0 10		remeenene p			1 100 0.
Modelo	Coeficientes e constantes	R ² (%)	EMR (%)	EME	Tendência
Newton	<i>k</i> = 0,0738	99,3238	17,5309	3,0772	Aleatória
Pages	<i>k</i> = 0,8376, <i>n</i> = 0,1162	99,6001	34,7627	17,3002	Tendenciosa
Henderson e Pabis	a = 0,9560, k = 0,0702	99,4291	20,7555	4,6418	Aleatória
Aproximação de difusão	a = 0,1766, k = 2,1641, b = 0,0276	99,7822	32,7542	16,6501	Tendenciosa
Exponencial de dois termos	a = 0,1432, k = 0,4407	99,6980	28,1785	10,9554	Tendenciosa

Tabela 6 – Valores de R^2 , *EMR*, *EME* e a tendência para o minério de cromo a T = 100 °C.

Tabela 7 – Valores de R^2 , *EMR*, *EME* e a tendência para o minério de cromo a T = 150 °C.

Modelo	Coeficientes e constantes	$R^{2}(\%)$	EMR (%)	EME	Tendência
Newton	<i>k</i> = 0,2223	99,9347	89,5380	80,7824	Tendenciosa
Pages	k = 0,2598, n = 0,9176	99,9461	80,1641	65,8713	Tendenciosa
Henderson e Pabis	<i>a</i> = 0,9988, <i>k</i> = 0,2221	99,9348	89,4965	80,7123	Tendenciosa
Aproximação de difusão	a = 0,9788, k = 0,2357, b = 0,0564	99,9943	14,5490	2,1188	Aleatória
Exponencial de dois termos	<i>a</i> = 0,5442, <i>k</i> = 0,3013	99,9507	76,7280	60,8089	Tendenciosa

Tabela 8 – Valores de R^2 , *EMR*, *EME* e a tendência para o minério de cromo a T = 200 °C.

Modelo	Coeficientes e constantes	$R^{2}(\%)$	EMR (%)	EME	Tendência
Newton	k = 0,2841	99,5847	98,5755	97,1869	Tendenciosa
Pages	k = 0,6957, n = 0,5095	99,9302	36,0602	14,8582	Tendenciosa
Henderson e Pabis	<i>a</i> = 0,9963, <i>k</i> = 0,2834	99,5855	98,5532	97,1436	Tendenciosa
Aproximação de difusão	a = 0,9301, k = 0,3547, b = 0,0718	99,9782	5,9973	0,4058	Aleatória
Exponencial de dois termos	<i>a</i> = 0,3567, <i>k</i> = 0,6000	99,7191	94,3902	89,2829	Tendenciosa

Os resultados das Tabelas 3-8 mostram que todos os modelos matemáticos apresentam R^2 superior a 99%. De acordo com Madamba *et al.* (1996), R^2 acima de 99,9% indica os melhores modelos de secagem. Para as amostras de ferro, verifica-se que o modelo de *Aproximação de difusão* se ajustou muito bem aos dados experimentais da secagem do minério de ferro, em todas as temperaturas, pois apresentou R^2 superior a 99,9%, *EMR* menor do que 10% e baixo *EME*. O mesmo modelo também foi o melhor para ajustar praticamente quase todos os dados do minério de cromo, com exceção dos dados a T = 100 °C, na qual o melhor modelo foi o *Henderson e Pabis*. A Figura 2 ilustra os dados experimentais e preditos para *RU*, através dos melhores modelos expostos nas Tabelas 3-8 em cada temperatura estudada.

Figura 2 – RU dos valores experimentais e preditos para os minérios de ferro e cromo.

Pela Figura 2, nota-se que o modelo de *aproximação de difusão* apresenta comportamento similar aos dados experimentais da secagem do minério de ferro (em todas as temperaturas avaliadas) e de cromo (T = 150 e 200 °C). Já o modelo de *Henderson e Pabis* também concorda satisfatoriamente com os valores experimentais do minério de cromo a T = 100 °C.

4 CONCLUSÃO

Percebeu-se que todos os modelos usados para ajustar os dados experimentais apresentaram $R^2 > 99$ %. Mas, o modelo de *Aproximação de difusão* foi o mais eficiente para os minérios estudados. Ainda assim, o modelo de *Henderson e Pabis* se assemelhou aos dados experimentais do minério de cromo a T = 100 °C. Por fim, faz-se necessário a continuidade do trabalho com outros estudos futuros, a fim de caracterizar de forma físico-química as amostras utilizadas e confrontar com os padrões industriais validados.

REFERÊNCIAS

- ASABE American Society of Agricultural and Biological Engineers. Moisture Measurement - Forages: Standard S358.2 DEC1988, R2008. American Society of Agricultural and Biological Engineers (ed.). Standards, Engineering Practices, and Data. St. Joseph: ASABE, p.684-685, 2010.
- CARVALHO, P. S. L. Minério de ferro. BNDES: biblioteca digital, p. 197-234, 2014.
- GEANKOPLIS, C. J. **Procesos de transporte y operaciones unitarias.** 3.ed. Cidade do México: Compãnía Editorial Continental, 1998.
- GONÇALVES, M. M. **Balanço Mineral Brasileiro.** 2001. Disponível em: http://www.dnpm.gov.br/dnpm/paginas/balanco-mineral/arquivos/balanco-mineral-brasileiro-2001-cromo>. Acesso em: 13 de abril de 2019.
- MADAMBA, P. S.; BUCKLE, K. A.; DRISCOLL, R. H. The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, v.29, p. 75-97, 1996.