

MEDIDA EXPERIMENTAL E MODELAGEM TERMODINÂMICA DA MASSA ESPECÍFICA E DA VELOCIDADE DO SOM EM ALTAS PRESSÕES PARA O SISTEMA DECALINA+N-HEXADECANO

F. P. NASCIMENTO¹, A. L. H. COSTA¹, M. L. L. PAREDES¹, A. MEHL², R. S. LUCENA² e F. L. P. PESSOA²

> ¹ Universidade do Estado do Rio de Janeiro, Instituto de Química ² Universidade Federal do Rio de Janeiro, Escola de Química E-mail para contato: paredes@uerj.br

RESUMO – Misturas de decalina (molécula naftênica) e n-hexadecano (alcano linear), apresentam diferenças em forma, natureza química e comprimento de cadeia, podendo ser encontrados em frações de querosene e diesel. Com o objetivo de se avaliar a influência destas diferenças nas propriedades físicas da mistura destes hidrocarbonetos, no presente estudo foram determinadas experimentalmente as massas específicas desses hidrocarbonetos puros e suas misturas binárias, em diferentes composições, nas temperaturas de (313,2, 323,2 e 333,2) K e pressão atmosférica e as velocidades do som nestes mesmos sistemas nas temperaturas de (313,2, 323,2 e 333,2) K e definições termodinâmicas foi possível calcular: massa específica em altas pressões, volume em excesso, compressibilidade isentrópica e compressibilidade isentrópica em excesso. Os dados experimentais foram correlacionados com a equação de estado de Prigogine-Flory-Patterson.

1. INTRODUÇÃO

Em estudos petroquímicos, decalina é um composto naftênico utilizado como referência para frações de querosene e diesel. Desta forma, estudos de velocidade do som e massa específica a pressões elevadas, de misturas binárias de decalina e n-hexadecano podem ser utilizados para simular propriedades das frações de querosene e diesel. Estas substâncias são assimétricas em tamanho, forma e natureza química, o que leva a crer que a mistura binária destes compostos não apresenta comportamento de solução ideal (Silva *et al.*, 2009; Paredes *et al.*, 2011).

No presente estudo foram realizadas medidas experimentais de velocidade do som (u) nas temperaturas de (313,2, 323,2, e 333,2) K e pressões de (0,1, 5, 10, 15, 20 e 25) MPa para o sistema binário decalina(1) + n-hexadecano(2) em diferentes composições. Os dados de velocidade do som e de massa específica à pressão atmosférica foram utilizados para determinar a massa específica (ρ) das misturas nas mesmas condições de temperatura e pressão dos dados de velocidade do som. Os dados de velocidade do som e massa específica foram correlacionados com a equação de estado de Prigogine-Flory-Patterson (PFP) (Prausnitz *et al.*, 1999).

2. EXPERIMENTAL

Os reagentes utilizados nos experimentos foram: n-hexadecano fornecido pela VETEC Química, com teor mínimo em massa de 99,0% e decalina (decahidronaftaleno) fornecido pela VETEC Química, com dosagem mínima em massa de 99,0% da mistura dos isômeros - 41% (massa) do isômero *cis* e 59% (massa) do isômero *trans* (Silva *et al.*, 2009). Os produtos químicos usados não sofreram tratamento de purificação prévio.

As misturas de hidrocarbonetos foram preparadas pensando-se uma massa desejada de cada hidrocarboneto puro em balança analítica (Mettler Toledo AR2140) com precisão de $\pm 10^{-7}$ kg.

2.1. Determinação da velocidade do som

As velocidades do som foram determinadas em uma célula de equilíbrio de volume variável, com paredes planas de distância fixa e conhecida, desde a pressão atmosférica até a pressão de 25 MPa, em intervalos de 5 MPa, nas temperaturas de (313,2, 323,2 e 333,2) K.

A mistura de interesse é transferida para dentro da célula de equilíbrio com o auxílio de um funil. A célula de equilíbrio é fechada e vácuo primário (baixo vácuo) é realizado rapidamente no meio para minimizar o ar presente inicialmente no sistema. O sistema é aquecido com o auxílio de uma fita de aquecimento até a temperatura de interesse e pressurizado até a pressão de estudo com o auxílio de uma bomba seringa (ISCO 260D). Dois transdutores de ultrassom são conectados externamente à célula: o primeiro é responsável pela emissão do sinal ultrassônico e o segundo pela recepção. Como os hidrocarbonetos avaliados neste estudo não apresentam efeitos dispersivos, a velocidade do ultrassom corresponde à velocidade do som (Lamb, 1965). O intervalo de tempo entre o sinal emitido e recebido é o tempo de voo que o sinal leva para atravessar o meio. Como a distância entre as paredes da célula é conhecida, a velocidade do som é encontrada dividindo-se a distância entre as paredes da célula pelo tempo de voo. A incerteza padrão na temperatura é de 0,1 K e 0,1 MPa para a pressão.

O aparato experimental e metodologia empregada para a medida da velocidade do som estão descritos detalhadamente em Nascimento (2012).

3. CÁLCULOS

3.1. Cálculo da massa específica a altas pressões

Com o objetivo de se determinar a massa específica a pressões elevadas dos sistemas estudados, tomou-se como base uma modificação das metodologias propostas por Daridon *et al.* (1998) e González-Salgado *et al.* (2006). Para tanto, foi escrita uma rotina para o cálculo da massa específica a partir dos dados medidos de velocidade do som. O método é baseado na equação de Newton-Laplace (Rowlinson e Swinton, 1982), que relaciona velocidade do som, compressibilidade isentrópica (k_S) e massa específica (Equação 1).

19 a 22 de outubro de 2014 Florianópolis/SC

$$k_s = \frac{1}{\rho u^2} \tag{1}$$

A relação termodinâmica que correlaciona o k_S ao coeficiente de compressibilidade isotérmica (k_T) é apresentada na Equação 2:

$$k_T = k_S + \frac{T\alpha^2}{\rho C_P}$$
 sendo $\alpha = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_P$ (2)

onde *T* é a temperatura, C_P a capacidade calorífica mássica a pressão constante e α representa o coeficiente isobárico de expansão térmica.

A Equação 3 é utilizada para expressar a variação da massa específica com a pressão, em um processo isotérmico, em termos de velocidade do som:

$$\left(\frac{\partial\rho}{\partial P}\right)_{T} = \frac{1}{u^{2}} + \frac{T\alpha^{2}}{C_{P}}$$
(3)

que, integrada em relação à pressão, fornece a Equação 4 que relaciona massa específica e velocidade do som:

$$\rho(P,T) = \rho(P_0,T) + \int_{P_0}^{P} \frac{1}{u^2} dP + T \int_{P_0}^{P} \frac{\alpha^2}{C_P} dP$$
(4)

onde *P* representa pressão e P_0 pressão atmosférica. O primeiro termo do lado direito na Equação 4, que corresponde à maior contribuição, pode ser obtido diretamente pela medida da massa específica à pressão atmosférica, determinada experimentalmente em um densímetro digital da marca Anton-Paar (modelo DMA 4500).

A metodologia empregada para cálculo da massa específica a partir de dados de velocidade do som está descrita detalhadamente em Nascimento (2012).

3.2. Prigogine-Flory-Patterson

De acordo com o modelo de Prigogine-Flory-Patterson (Prausnitz *et al.*, 1999), uma equação de estado é aplicada na forma reduzida para líquidos puros e misturas de líquidos (Equação 5):

$$\widetilde{P}\widetilde{V}/\widetilde{T} = \widetilde{V}^{1/3}/\left(\widetilde{V}^{1/3} - 1\right) - 1/\left(\widetilde{V}\widetilde{T}\right)$$
(5)

As propriedades reduzidas são (Equação 6):

$$\widetilde{P} = P/P^*, \ \widetilde{T} = T/T^* \ e \ \widetilde{V} = V/V^*$$
(6)

onde V representa o volume molar e $(P^*, T^* \in V^*)$ são parâmetros característicos. Para uma mistura binária foram utilizadas as seguintes regras de mistura (Equações 7 e 8):

$$P^* = P_1^* \Phi_1 + P_2^* \Phi_2 + 0.5 (\Phi_1 \theta_2 + \Phi_2 \theta_1) X_{12}$$
(7)

$$T^* = P^* / \left[\left(P_1^* / T_1^* \right) \Phi_1 + \left(P_2^* / T_2^* \right) \Phi_2 \right]$$
(8)

onde X_{12} é um parâmetro de interação binária. Para a determinação das propriedades da mistura, são introduzidas as variáveis $\Phi \in \theta$, descritas detalhadamente em Paredes *et al.* (2012).

O método dos mínimos quadrados ponderados foi utilizado para ajustar os valores dos parâmetros característicos dos componentes puros e o parâmetro de interação binária a fim de se minimizar a seguinte função objetivo (Equação 9):

$$Fobj = \sum_{i=1}^{n} \left\{ \left(\rho_i^{calc} - \rho_i^{exp} \right) / \delta \rho \right\}^2 + \left[\left(u_i^{calc} - u_i^{exp} \right) / \delta u \right]^2 \right\}$$
(9)

onde *i* indica um ponto experimental, *n* indica o número de pontos experimentais, os sobrescritos *calc* e *exp* representam calculado e experimental, respectivamente, e δ é a incerteza experimental. Para a modelagem com a equação de PFP, a decalina utilizada nas corridas experimentais, formada por uma mistura de isômeros *cis* e *trans*, foi tratada como um pseudocomponente puro.

3.3. Propriedades em excesso

As propriedades em excesso ($V^E e k_S^E$) foram calculadas com as Equações 10 e 11:

$$V^{E} = V - \sum_{i=1}^{2} x_{i} V_{i}$$
(10)

$$k_{S}^{E} = k_{S} - \sum_{i=1}^{2} \phi_{i} k_{S,i} - T \left[\left(\sum_{i=1}^{2} \phi_{i} \alpha_{i}^{2} / \rho_{i} C_{P,i} \right) - \left(\sum_{i=1}^{2} x_{i} / \rho_{i} \right) \left(\sum_{i=1}^{2} \phi_{i} \alpha_{i} \right)^{2} / \left(\sum_{i=1}^{2} x_{i} C_{P,i} \right) \right]$$
(11)

O subscrito *i* indica propriedades do componente puro, exceto ϕ_i e x_i que significam, respectivamente, fração volumétrica de solução ideal e fração molar do componente *i* na mistura. A metodologia de cálculo das propriedades em excesso está descrita detalhadamente em Paredes *et al.* (2012).

4. RESULTADOS E DISCUSSÃO

O aparato para medida da velocidade do som foi validado reproduzindo-se dados na literatura publicados por Ye *et al.* (1990) para o n-hexadecano puro nas temperaturas de (313,2 e 333,2) K e pressões de (0,1, 5, 10, 15, 20 e 25) MPa. Os resultados são apresentados na Figura 1(a), onde é possível observar a boa concordância entre os dados publicados por Ye *et al.* (1990) e obtidos no

presente estudo. A incerteza expandida para a velocidade do som, com nível de confiança de 95% é de 1,0 m/s.

A metodologia de cálculo da massa específica a altas pressões foi validada reproduzindo-se dados disponíveis na literatura para o n-hexadecano puro na temperatura de 333,2 K e pressões de (0,1, 5, 10, 15, 20 e 25) MPa. Os resultados são apresentados na Figura 1(b) e apresentam boa concordância com os dados disponíveis na literatura aberta. A incerteza expandida para a massa específica, com nível de confiança de 95% é de 0,1 kg/m³. Para V^E é de 4·10⁻² m³/mol e para k_S^E é de 1 TPa⁻¹. A discrepância entre os dados de diferentes autores é maior do que a incerteza experimental reportada por eles, especialmente a pressões elevadas. Contudo, nossos dados estão compatíveis com os reportados por Amorim *et al.* (2007), dentro das incertezas experimentais.

Figura 1 – (a) velocidade do som para o n-hexadecano: ◊ (313,2 K), presente estudo; □ (313,2 K), Ye *et al.* (1990); ○ (333,2 K), presente estudo; △ (333,2 K), Ye *et al.* (1990); <u></u> (313,2 K), PFP;
(333,2 K), PFP. (b) massa específica para o n-hexadecano (333,2 K): △, presente estudo; □, Amorim *et al.* (2007); ◊, Chang *et al.* (1998); <u></u>, PFP.

A Tabela 1 apresenta os resultados detalhados de velocidade do som e massa específica obtidos no presente estudo para os hidrocarbonetos puros decalina e n-hexadecano e para as misturas binárias decalina(1) + n-hexadecano(2). Como pode ser observado, para todos os sistemas avaliados, tanto a velocidade do som como a massa específica diminuem com o aumento da temperatura e aumentam com o aumento da pressão.

A massa específica calculada com o modelo de PFP apresentou desvios médios para componentes puros de 0,2 kg/m³, o que está próximo à incerteza experimental da massa específica, indicando que os parâmetros para esta propriedade foram estimados com sucesso. Para a velocidade do som o desvio médio encontrado para os componentes puros foi de 10 m/s, que é uma ordem de grandeza maior que a incerteza experimental para a velocidade do som, causado principalmente pela falha do modelo em representar a dependência desta propriedade com a pressão. Os parâmetros

ajustados para a equação de PFP são apresentados na Tabela 2.

Tabela 1. Velocidade do som (m/s) e massa específica (kg/m	³) para os hidrocarbonetos Decalina e n-
Hexadecano puros e misturas binária	s (fração molar).

T(K) -	Pressão (MPa)											
I (IX)	0,	,1	5	5	1	0	1	5	2	0	2	5
	и	ρ	и	ρ	и	ρ	и	ρ	и	ρ	и	ρ
]	Decalina						
313,2	1339	865,4	1365	868,8	1389	872,1	1414	875,2	1437	878,2	1461	881,2
323,2	1300	857,9	1327	861,4	1353	864,9	1377	868,2	1401	871,3	1424	874,4
333,2	1261	850,3	1289	854,0	1316	857,7	1341	861,1	1365	864,5	1389	867,7
n-Hexadecano												
313,2	1283	759,6	1311	763,1	1340	766,5	1366	769,7	1391	772,8	1416	775,9
323,2	1248	752,7	1278	756,3	1307	759,8	1335	763,2	1361	766,4	1387	769,5
333,2	1212	745,9	1242	749,7	1273	753,4	1301	756,9	1328	760,3	1354	763,5
0,2500 Decalina + 0,7500 n-Hexadecano												
313,2	1290	775,9	1318	779,3	1346	782,7	1373	785,9	1398	789,0	1422	792,0
323,2	1254	769,0	1284	772,6	1312	776,1	1340	779,5	1365	782,7	1390	785,8
333,2	1217	762,0	1248	765,8	1278	769,5	1305	773,1	1330	776,5	1356	779,7
0,5004 Decalina + 0,4996 n-Hexadecano												
313,2	1298	797,9	1326	801,4	1353	804,7	1380	807,9	1404	811,0	1428	814,0
323,2	1263	790,9	1292	794,5	1319	798,0	1347	801,4	1372	804,6	1396	807,7
333,2	1226	783,8	1257	787,6	1285	791,3	1312	794,8	1339	798,2	1364	801,5
0,7510 Decalina + 0,2490 n-Hexadecano												
313,2	1314	825,2	1341	828,6	1366	831,9	1391	835,1	1415	838,2	1438	841,2
323,2	1275	818,0	1303	821,6	1331	825,1	1357	828,4	1381	831,6	1405	834,8
333,2	1238	810,7	1266	814,5	1296	818,2	1322	821,7	1347	825,1	1372	828,3

Tabela 2. Valores ajustados para o modelo de Prigogine-Flory-patterson (PFP): parâmetros característicos (P^* , T^* , V^*) para hidrocarbonetos puros e parâmetros de interação binária (X_{12}) para o sistema {Decalina(1) + n-Hexadecano(2)}.

Parâmetro característico	Valor	
	Decalina	n-Hexadecano
P^*	$5,18 \cdot 10^2 \text{ MPa}$	$4,73 \cdot 10^2$ MPa
T^{*}	5698,8 K	5505,5 K
V^{*}	$129, 4 \cdot 10^{-6} \text{ m}^3/\text{mol}$	$239,0.10^{-6} \text{ m}^{3}/\text{mol}$
	Decalina(1) + n-He	exadecano(2)
X_{12}	-0,203 MPa	

A Figura 2 apresenta os resultados encontrados de k_s^E e V^E na temperatura de 333,2 K e pressões de (0,1 e 15) MPa contra a fração molar de decalina na mistura. Como pode ser observado, o modelo PFP não correlacionou bem os dados de massa específica e velocidade do som para misturas. As barras de erro foram plotadas considerando um intervalo de confiança de 95%. Apesar de não ser apresentado aqui, as demais temperaturas e pressões avaliadas apresentaram resultados similares. Tanto k_s^E como V^E apresentam valores negativos, que pode ser explicado pela contração da mistura relacionado às diferenças de volume livre entre a molécula de decalina, planar, e n-hexadecano, que apresenta mais graus de liberdade rotacional. Quanto maior a temperatura, maior a diferença de volumes livres. Quanto maior a pressão, menor a diferença de volumes livres (Paredes *et al.*, 2012).

Figura 2 – (a) k_s^E para o sistema {Decalina(1) + n-Hexadecano(2)} a 333,2 K: \circ , 0,1 MPa; \triangle , 15 MPa; (0,1 MPa), PFP; (15 MPa), PFP. (b) V^E para o sistema {Decalina(1) + n-Hexadecano(2)}: \circ , 0,1 MPa; \triangle , 15 MPa; (0,1 MPa), PFP; (15 MPa), PFP.

5. CONCLUSÃO

Foram determinados experimentalmente a massa específica dos hidrocarbonetos puros decalina e n-hexadecano, assim como para a mistura binária destes hidrocarbonetos nas temperaturas de (313,2, 323,2 e 333,2) K e pressão atmosférica. A velocidade do som foi determinada para estes mesmos sistemas, nas temperaturas de (313,2, 323,2 e 333,2) K e pressões de (0,1, 5, 10, 15, 20 e 25) MPa. A partir destas medidas, foi possível determinar a massa específica dos sistemas e a compressibilidade isentrópica nas mesmas condições de temperatura e pressão, a partir destes dados foram determinadas as propriedades em excesso.

O modelo de Prigogine-Flory-Patterson correlacionou bem os dados de massa específica dos componentes puros, mas falhou em representar a dependência da velocidade do som com a pressão.

Para as misturas o modelo PFP não correlacionou bem os dados de massa específica e velocidade do som.

6. REFERÊNCIAS

AMORIM, J.A.; CHIAVONE-FILHO, O.; PAREDES, M.L.L.; RAJAGOPAL, K. High-pressure density measurements for the binary system cyclohexane n-hexadecane in the temperature range of (318.15 to 413.15) K. J. Chem. Eng. Data, v. 52, p. 613-618, 2007.

CHANG, J.S.; LEE, M.J.; LIN, H.M. Densities of binary mixtures of hexadecane with m-xylene and tetralin from 333 K to 413 K and pressures up to 30 MPa. *J. Chem. Eng. Data*, v. 43, p. 233-237, 1998.

DARIDON, J.L.; LAGRABETTE, A.; LAGOURETTE, B. Speed of sound, density, and compressibilities of heavy synthetic cuts from ultrasonic measurements under pressure. *J. Chem. Thermodyn.*, v. 30, p. 607-623, 1998.

GONZÁLEZ-SALGADO, D.; TRONCOSO, J.; PLANTIER, F.; DARIDON, J. L.; BESSIÈRES, D. Study of the volumetric properties of weakly associated alcohols by means of high-pressure speed of sound measurements. *J. Chem. Thermodyn.*, v. 38, p. 893-899, 2006.

LAMB, J. Physical Acoustics, Principles and Methods (Vol. 2). New York: Academic Press, 1965.

NASCIMENTO, F.P. *Estudo teórico e experimental da velocidade do som em sistemas contendo hidrocarbonetos*. Universidade do Estado do Rio de Janeiro: Dissertação de Mestrado, 2012.

PAREDES, M.L.L.; REIS, R.A.; SILVA, A.A.; SANTOS, R.N.G.; SANTOS, G.J. Densities, sound velocities, and refractive indexes of tetralin + n-hexadecane at (293.15, 303.15, 313.15, 323.15, 333.15, and 343.15) K. J. Chem. Eng. Data, v. 56, p. 4076-4082, 2011.

PAREDES, M.L.L.; REIS, R.A.; SILVA, A.A.; SANTOS, R.N.G.; SANTOS, G.J.; RIBEIRO, M.H.A.; XIMANGO P.B. Densities, sound velocities, and refractive indexes of (tetralin + n-decane) and thermodynamic modeling by Prigogine-Flory-Patterson model. *J. Chem. Eng. Thermodyn.*, v. 45, p. 35-42, 2012.

PRAUSNITZ, J.M.; LICHTENTHALER, R.N.; AZEVEDO, E.G. Molecular Thermodynamics of Fluid-Phase Equilibria, New Jersey: Prentice-Hall, 1999.

ROWLINSON, J.S.; SWINTON, F.L. Liquid and Liquid Mixtures (3rd Edition). London: Butterworths, 1982.

SILVA, A.A.; REIS, R.A.; PAREDES, M.L.L. Density and viscosity of decalin, Cyclohexane, and toluene binary mixtures at (283.15, 293.15, 303.15, 313.15, and 323.15) K. J. Chem. Eng. Data, v. 54 p. 2067-2072, 2009.

YE, S.; ALLIEZ, J.; LAGOURETTE, B.; SAINT-GUIRONS, H.; ARMAN, J.; XANS, P. Reálisation d'un dispositif de mesure de la vitesse et de l'atténuation d'ondes ultrasonores dans des liquides sous pression. *Revue Phys. Appl.*, v. 25, p. 555-565, 1990.