

# AVALIAÇÃO ECONÔMICA DE PROCESSOS DE CAPTURA DE CO<sub>2</sub> POR ADSORÇÃO A PARTIR DE GASES DE PÓS-COMBUSTÃO

H. R. PEIXOTO<sup>1</sup>, C. B. SOUSA<sup>1</sup>, V. A. M. GOMES<sup>1</sup>, S. M. P. de LUCENA<sup>1</sup>

<sup>1</sup>Universidade Federal do Ceará, Departamento de Engenharia Química E-mail para contato: hugohrp@gmail.com

RESUMO – As emissões de dióxido de carbono são reconhecidas como um dos fatores que contribuem para o aquecimento global e para a mudança climática. A captura do  $CO_2$  advindo dos gases de pós-combustão emitido por plantas energéticas tem recebido uma atenção importante, sendo uma alternativa viável para redução da emissão desse gás. A adsorção é uma técnica que se mostra atrativa para este tipo de aplicação. Sendo os gases de pós-combustão representados por uma mistura 15%  $CO_2$  e 85%  $N_2$ , simulações em software Aspen® foram realizadas considerando um modelo *shortcut* do processo após o dimensionamento do leito de adsorção, a fim de calcular os custos envolvidos no processo *Pressure Swing Adsorption* para captura de dióxido de carbono com material adsorvente, como zeólita e estrutura metal-orgânica. Estudos preliminares mostram que, dependendo do material utilizado e das condições propostas, o processo de adsorção pode ser economicamente mais viável que outros processos de captura.

# 1. INTRODUÇÃO

Com o intuito de reduzir as emissões de dióxido de carbono, uma promissora tecnologia aplicada aos gases de pós-combustão é a Captura, Utilização e Armazenamento do  $CO_2$  (CCUS - da sigla em Inglês). Diversas operações para captura de dióxido de carbono vem sendo estudadas, como adsorção, absorção, separação por membranas, separação criogênica etc. Dentre elas, a captura de  $CO_2$  por adsorventes sólidos a partir de ciclos de adsorção-dessorção tem-se demonstrado menos onerosa, uma vez que opera em condições brandas de temperatura e de pressão. O material adsorvente utilizado no processo deve apresentar elevada capacidade de adsorção, alta seletividade, ser facilmente regenerado, ou seja, com qum baixo fornecimento de energia, de maneira que possa aumentar a competitividade dessa tecnologia frente às outras citadas. A zeólita 13X faujasita impregnada com cátions de Sódio (NaX) apresenta elevada capacidade de adsorção para o dióxido de carbono (Walton *et al.*, 2006). A peneira molecular possui poros regulares, apresentando alta estabilidade, sendo, portanto, um dos materiais promissores para este tipo de processo.

Há uma grande dificuldade quando é buscada a otimização de condições de operação de processos cíclicos de adsorção, devido às diversas condições experimentais, tornando a aquisição de dados um processo trabalhoso e caro. Entretanto, a Simulação Molecular pode fornecer de forma



rápida e precisa dados úteis acerca dessas faixas de operação, como capacidade de trabalho e seletividade de trabalho em determinadas condições de pressão e de temperatura de unidades industriais. A Simulação de Processo em softwares comerciais pode fornecer dados relacionados ao custo energético de operação desse tipo de planta, como custos de aquecimento/arrefecimento e de compressão/vácuo.

Foram utilizados os campos de força para adsorção de  $CO_2$  e  $N_2$  na zeólita 13X calculados em trabalho anterior Lucena *et al.* (2014). Este campo de força foi aplicado para região de baixa pressão, possibilitando o cálculo de isotermas de adsorção e dando base à investigação do uso de faujasita NaX na captura de  $CO_2$  de gases efluentes de termelétricas. O modelo reproduziu dados experimentais da unidade TVSA proposta por Su e Lu (2012). Nesse mesmo trabalho anterior, foram calculadas as capacidades de trabalho e as seletividades de trabalho para os gases estudados em condições mais amplas de temperatura e de pressão, a fim de propor uma nova condição de operação para o processo. Este atual trabalho investigou o efeito dos custos energéticos do processo na escolha das condições ideais de operação, a partir de simulações em software Aspen  $\circledast$  e realizou o dimensionamento de coluna de adsorção para o material estudado na mistura proposta por Su e Lu (2012).

## 2. MODELOS E MÉTODOS

#### 2.1. Modelos

O modelo utilizado para o  $CO_2$  foi desenvolvido no trabalho de Vishnyakov *et al.* (1999), enquanto que o para  $N_2$  foi desenvolvido por Kaneco *et al.* (1994). Para a zeólita NaX, tomou-se como base os dados obtidos por Fitch *et al.* (1986). Os detalhes relacionados a estes modelos estão no nosso trabalho anterior Lucena *et al.* (2014).

### 2.2. Condições operacionais

A seleção das condições de operação dos processos que utilizam a adsorção como método de separação é baseada em três análises principais: capacidade de trabalho, seletividade e custo de implantação e manutenção (Ruthven, 1984).

Recentemente, Su e Lu (2012) propuseram uma unidade TVSA carregada com zeólita NaX para captura de  $CO_2$  proveniente de uma corrente gasosa de queima de combustíveis fósseis. Neste experimento, os autores utilizaram uma corrente gasosa binária ( $CO_2$  e  $N_2$ ) com concentração de 15% de  $CO_2$ . Durante a carga, foram utilizadas as condições de 100 kPa e 298 K. Na descarga os autores reduziram a pressão para 70 kPa e a temperatura elevada para 413K.

O principal objetivo do presente trabalho é avaliar e propor novas condições operacionais para a etapa de regeneração do processo dos autores citados anteriormente, mantendo as condições de alimentação iguais. As condições operacionais são avaliadas de acordo com:



<u>Capacidade de trabalho:</u> É a quantidade adsorvida do adsorbato entre os pontos de carga e descarga, ou seja, é a diferença entre a quantidade adsorvida na carga pela adsorvida na descarga. Sua importância está ligada ao fato de permitir comparar diferentes condições de temperatura e pressão e de rendimento de diferentes materiais. Quanto maior o seu valor para o componente de interesse, mais promissor e viável o processo.

<u>Seletividade de trabalho:</u> Enquanto a capacidade de trabalho está relacionada apenas com um componente, a seletividade de trabalho é um parâmetro comparativo entre os diversos componentes que estão presentes na alimentação do processo. Essa propriedade é importante pois permite estimar e identificar a especificidade do adsorvente para um composto. Ela é definida pela razão entre a capacidade de trabalho do componente de interesse e a capacidade de trabalho de outro componente.

<u>Custo energético de operação:</u> Esta etapa da análise está relacionada ao último passo proposto por Ruthven (1984), ou seja, com o custo de manutenção da planta. Para tal fim, são simulados de forma simplificada em software Aspen ® os custos energéticos durante as etapas do processo, que são: adsorção à 298 K e 100 kPa até o ponto de breakthrough, aquecimento da coluna com vapor superaquecido até a temperatura de dessorção, vácuo até a pressão de dessorção e arrefecimento da coluna com água de resfriamento até a temperatura de adsorção do processo (298 K), sendo, em seguida, retornado o sistema à etapa de adsorção. Em adição a essas etapas, considera-se que o gás de pós-combustão saia da fonte a 373K e 100 kPa e precise ser resfriado até 298 K para que seja adsorvido na coluna. Não há custo de compressão na etapa de adsorção, uma vez que o gás proveniente fonte está sob a pressão necessária para ser adsorvido (100 kPa).

#### 2.3. Coluna de adsorção

O dimensionamento de uma coluna para esse processo deve levar em conta a diferença entre a capacidade de adsorção na etapa de adsorção e na etapa de regeneração para o componente a ser removido, no nosso caso o dióxido de carbono. O procedimento de dimensionamento utilizado foi proposto por Rodrigues *et al.* (2010) e pode ser descrito de acordo com o fluxograma representado pela Figura 1.

No fluxograma,  $D_{col} \in A_{col}$  são, respectivamente, o diâmetro e a área da coluna. F é a vazão volumétrica de gás de pós-combustão, sendo u a velocidade de escoamento desse gás dentro da coluna. O tempo da etapa de adsorção é dado por  $t_{ads}$  e a vazão molar de dióxido de carbono alimentado à coluna é  $\dot{n}_{CO_2}^{alim}$ . A capacidade de trabalho do componente a ser recuperado (dióxido de carbono), é dada por  $q_w$ . A massa teórica de adsorvente é  $m_{100\%}$ , sendo  $\omega$  a eficiência da coluna e m a massa real requerida de sólido. A densidade aparente do leito é dada por  $\rho_{ap}$ , sendo  $V_{col} \in L_{col}$  o volume e o comprimento, respectivamente, calculados da coluna.





Figura 1 – Fluxograma de dimensionamento de coluna de adsorção.

#### **3. RESULTADOS**

Baseado em Su e Lu (2012), a mesma condição de alimentação (ou de carga) foi utilizada. As quantidades adsorvidas simuladas de cada componente são fornecidas pela Tabela 1 abaixo:

| Propriedades | Carga |
|--------------|-------|
| P (kPa)      | 100   |
| T (K)        | 298   |
| CO2 (mmol/g) | 2,942 |
| N2 (mmol/g)  | 0,271 |

| rabela r. condições de carga |
|------------------------------|
|------------------------------|

A fim de avaliar a melhor condição de regeneração proposto por Su e Lu (2012), a faixa de pressão utilizada neste trabalho foi de 50 a 100 kPa, com incremento de 10 kPa. As temperaturas utilizadas foram de 323, 348, 373, 398, 413 e 423 K.

### 3.1. Capacidade e seletividade de trabalho

Os dados abaixo foram obtidos a partir de isotermas de adsorção obtidas por Simulação Molecular e todo o procedimento está demonstrado no nosso trabalho anterior Lucena *et al.* (2014).

As Figuras 2 e 3 fornecem as capacidades de trabalho do  $CO_2$  e do  $N_2$ , respectivamente para a faixa de pressão e de temperatura estudada.

A Figura 4 fornece o gráfico da seletividade de trabalho para a faixa de temperatura e de pressão trabalhada.





**Figura 2.** Capacidade de trabalho CO<sub>2</sub> em NaX. 323 K (■), 348 K (●), 373K (▲), 398K (▼), 413K (♦), 423K (◄).

**Figura 3.** Capacidade de trabalho N<sub>2</sub> em NaX. 323 K (■), 348 K (●), 373K (▲), 398K (♥), 413K (♦), 423K (◀).



**Figura 4.** Seletividade de trabalho CO<sub>2</sub> e N<sub>2</sub> em NaX. 323 K ( $\blacksquare$ ), 348 K ( $\bullet$ ), 373K ( $\blacktriangle$ ), 398K ( $\checkmark$ ), 413K ( $\diamond$ ), 423K ( $\triangleleft$ ).

Considerando que, para altas temperaturas, a capacidade de trabalho varia pouco com a pressão, podemos dizer que a temperatura ideal de descarga fica entre 398 e 423K. Para temperaturas abaixo de 398K há uma perda elevada de capacidade de retenção do componente mais adsorvido pelo leito.



Como a capacidade de trabalho foi útil para o fornecimento da faixa de temperatura ideal para a descarga, a Seletividade de Trabalho pode ser capaz de fornecer a região de pressão na descarga. Lembrando que a temperatura deve estar entre 398 e 423K e que é interessante que a seletividade possua o maior valor possível, podemos eleger que a pressão de descarga fica entre 70 e 90 kPa.

Vale ressaltar que a elevação de pressão para 100 kPa elevaria a seletividade de trabalho, entretanto, haveria perda na capacidade de trabalho. Pode-se citar ainda que, visando à produtividade, é mais interessante modular pressão em relação à modulação de temperatura. O motivo é que o processo de aquecimento/resfriamento é muito mais lento que o processo de compressão/descarga.

#### 3.2. Custo energético de operação

A fim de continuar a avaliação das condições operacionais, foi avaliado o custo energético de cada faixa operacional com simulações em software Aspen  $\mathbb{B}$ . A vazão de operação escolhida foi de 0,3 m<sup>3</sup>/s de gás de pós-combustão que sai da fonte a 373 K e 100 kPa. As etapas avaliadas são as seguintes:

<u>Resfriamento do gás de pós-combustão:</u> O gás precisa atingir a temperatura de adsorção, que é 298K. Para tal, foi utilizado no simulador de processo um trocador de calor simplificado. O consumo para tal operação é de -28,05 kW, sendo o sinal negativo indicativo de calor retirado do sistema.

<u>Compressão do gás de pós-combustão:</u> Essa etapa não representa gasto energético, uma vez que o gás sai da fonte com a mesma pressão da etapa de adsorção (100 kPa).

<u>Aquecimento do leito para regeneração:</u> Foram avaliadas as mesmas temperaturas propostas nas análises anteriores para condição de descarga. A simulação foi realizada utilizando um balão "flash", com temperatura de entrada 373 K, sendo a saída a temperatura avaliada. Os resultados são apresentados na Tabela 2.

| Temperatura (K) | Carga Térmica (kW) |
|-----------------|--------------------|
| 323             | 9,284              |
| 348             | 18,63              |
| 373             | 28,05              |
| 398             | 37,47              |
| 413             | 43,19              |
| 423             | 47,02              |

Tabela 2. Resultados de carga térmica para aquecimento do leito

Pela análise da capacidade de trabalho, foi definida uma margem de temperatura de regeneração entre 398 e 423 K. De acordo com a Tabela 2, a temperatura que apresenta menor carga térmica para o sistema é 398 K, sendo a condição mais viável energeticamente para o processo.

Despressurização do leito: A despressurização do leito considera que a melhor temperatura de



regeneração de 398 K. Para tal simulação, considerou-se um compressor de eficiência 85% que opere da pressão a qual deseja-se chegar com o vácuo até a pressão atmosférica (100 kPa), sendo o trabalho de nosso interesse o negativo do trabalho calculado. A Tabela 3 fornece os resultados.

| Pressão (kPa) | Trabalho (kW) |
|---------------|---------------|
| 50            | -40,59        |
| 60            | -29,19        |
| 70            | -19,97        |
| 80            | -12,27        |
| 90            | -5,704        |

Tabela 3. Resultados de trabalho de despressurização do leito.

Analisando a seletividade de trabalho, foi definida uma faixa de pressão de regeneração entre 70 e 90 kPa. A Tabela 3 fornece que a pressão de 90 kPa é a que fornece menor trabalho de vácuo, portanto, é a pressão ideal de regeneração.

<u>Resfriamento do leito sob vácuo:</u> De acordo com as análise anteriores, a condição ótima para pressão de regeneração é de 90 kPa. Sob essa pressão, o gás deve ser resfriado de 398 a 298 K. Para tal simulação, foi considerado um trocador de calor simplificado no software utilizado. A carga térmica é de -28,04 kW.

#### 3.3. Dimensionamento do leito

O ponto de partida para o dimensionamento da coluna de adsorção é definir um diâmetro para o leito. Devido a limitações no transporte dos vasos, um diâmetro usual é de 3 m, com área da secção transversal 7,07 m<sup>2</sup>. Para a alimentação de 0,3 m<sup>3</sup>/s, a velocidade superficial é de 0,042 m/s, o que fica de um intervalo empírico de 0,01-0,05 m/s. O tempo de adsorção  $t_{ads}$  é aproximado para o tempo estequiométrico  $t_{st}$ , que pode ser calculado pelas equações a seguir:

$$t_{st} = \tau (1 + \delta) \tag{1}$$

$$\tau = \frac{\varepsilon V}{F} \tag{2}$$

$$\delta = \frac{(1-\varepsilon)}{\varepsilon} \frac{q_{CO_20}}{C_{CO_20}}$$
(3)

Nas equações anteriores,  $\tau$  representa o tempo espacial da coluna, sendo V é o volume estimado da coluna, que no nosso caso é 35,34 m<sup>3</sup>, com comprimento estimado de 5 m. O fator de capacidade é representador por  $\delta$ , sendo  $q_{CO_2O}$  a quantidade adsorção do componente na alimentação em equilíbrio com a concentração  $C_{CO_2O}$ . Assim, o tempo de adsorção fica em torno de 7,7 h. A porosidade do leito



e a densidade aparente foram retiradas de Rodrigues *et al.* (2005), sendo 0,33 e 721 kg/m<sup>3</sup>, respectivamente. Para o dimensionamento, foi considerado um percentual de utilização do leito de 65%. A capacidade de trabalho para o componente de interesse (dióxido de carbono), foi 2,8 mol/kg, representada pela pressão 90 kPa e temperatura 398K.

De acordo com esse procedimento, o comprimento calculado do leito de adsorção é de 8,10 m.

### 4. CONCLUSÕES

Baseado na capacidade de trabalho do  $CO_2$ , a faixa ideal de temperatura da descarga do processo analisado é de 398 a 423K. Realizando o estudo da seletividade de trabalho do processo, a faixa de pressão da descarga ideal é de 70 a 90kPa. Vale citar que condições subatmosféricas de pressão foram escolhidas a fim de elevar a produtividade.

Analisando o custo energético de operação do processo, foi definido que a temperatura ideal de regeneração é de 398 K e que a pressão de vácuo que minimiza os custos de energia é de 90 kPa. O comprimento estimado da coluna é de 8,10 m.

### **5. REFERÊNCIAS**

FITCH, A. N.; JOBIC, H.; RENOUPREZ, A. Localization of Benzene In Sodlum-Y Zeolite by Powder Neutron Dlffraction, *J. Phys. Chem.*, v. 90, p. 1311-1318, 1986.

KANEKO, K.; CRACKNELL, R. F.; NICHOLSON, D. Nitrogen Adsorption in Slit Pores at Ambient Temperatures: Comparison of Simulation and Experiment. *Langmuir*, v. 10, p. 4606-4609, 1994.

LUCENA, S. M. P.; PEIXOTO, H. R.; GOMES, V. A. M. Encontro Brasileiro de Adsorção (EBA), 2014, Guarujá.

RODRIGUES, A. E.; GRANDE, C. A.; CAVENATI, S. 2<sup>nd</sup> Mercosur Congress on Chemical Engineering. 4<sup>th</sup> Mercosur Congress on Process Systems Engineering, 2005, Rio de Janeiro.

RODRIGUES, A. E.; RIBEIRO, A. M.; SANTOS, J. C. PSA design for stoichiometric adjustment of bio-syngas for methanol production and co-capture of carbon dioxide. *Chemical Engineering Journal*, v. 163, p. 355 – 363, 2010.

RUTHVEN, D.M.; "Principles of Adsorption and Adsorption Processes", Wiley, New York (1984).

SU, F.; LU, C. CO<sub>2</sub> capture from gas stream by zeolite 13X using a dual-column temperature/vacum swing adsorption. *Energy and Environmental Science*, v. 5, p. 9021-9027, 2012.

VISHNYAKOV, A.; RAVIKOVITCH, P. I.; NEIMARK, A. V.; Molecular Level Models for CO2 Sorption in Nanopores. *Langmuir*, v. 15, p. 8736-8742, 1999.