

ESTUDO DA REMOÇÃO DE CORANTES REATIVOS PELO PROCESSO DE ADSORÇÃO USANDO ARGILA CHOCOBOFE IN NATURA

K. A. CARVALHO¹, C. J. O. MORAIS¹, M. L. P. SILVA¹, A. L. N. MOTA², K. K. P. GOMES¹

¹ Universidade Federal Rural do Semi-Árido, Departamento de Agrotecnologia e Ciências Sociais
 ² Universidade Federal Rural do Semi-Árido, Departamento de Ciências Ambientais e Tecnológicas E-mail para contato: kalyanne@ufersa.edu.br

RESUMO – O controle da poluição das águas tem tido uma importância crescente nos últimos anos. Dentro deste contexto, a indústria têxtil vem se destacando, pois são geradoras de uma grande quantidade de efluentes que afetam a qualidade das águas. Diversos processos estão sendo adotados para o tratamento destes efluentes, entre eles o processo de adsorção. Neste trabalho estudou-se a remoção dos corantes reativos azul BF-5G, vermelho BF-4B e do amarelo BF-3R de um efluente sintético utilizando como adsorvente a argila Chocobofe in natura. Os ensaios foram realizados com temperatura e agitação constante de, respectivamente, 28°C e 180 rpm, por um tempo de 24 horas. Foi usado um planejamento composto central rotacional cujas variáveis estudadas foram a relação entre massa de adsorvente por 100 mL de solução assim como o pH da solução. O maior percentual de remoção foi de 91,73% para o corante reativo azul BF-5G, mostrando que a argila apresenta-se promissora para o processo de adsorção.

1. INTRODUÇÃO

Um dos maiores problemas associados à sociedade moderna é a contaminação das águas naturais. Para Fungaro (2009), a poluição das águas origina-se de várias fontes que produz contaminantes patogênicos, substâncias químicas inorgânicas e orgânicas. A grande capacidade poluidora dos mais diversos processos industriais tem gerado uma preocupação crescente, isso ocorre devido aos efluentes gerados possuírem elementos com altos níveis de toxidade (Silva *et al.*, 2010).

A indústria têxtil possui um grande destaque e a razão disso está relacionada à seu parque industrial gerar um grande volume de efluentes. Esses efluentes, quando não são tratados de uma forma adequada, tem o poder de causar sérios problemas ambientais (Kunz *et al.*, 2002). Uma dificuldade encontrada é a remoção, no tratamento, da forte cor causada pelos corantes advindos dos processos de tingimento e acabamento (Chaves *et al.*, 2008). Dentre os mais comuns tipos de tratamento dos efluentes industriais encontrados está a adsorção. Este método possui uma grande aplicação industrial, já que ele associa um baixo custo e apresenta elevadas taxas de remoção. O interesse principal está na busca de adsorventes alternativos para a remoção dos corantes que possuam baixo custo (Ruthven, 1984; Guaratini e Zanoni, 2000; Dabrowski, 2001; Gupta e Suhas, 2009; Silva *et al.*, 2012).

Com isso, um grande interesse em busca do desenvolvimento de técnicas de tratamento mais adequadas para os mais diversos tipos de efluentes tem surgido. Diante dessa realidade, procuram-se novas formas de remover esses corantes a fim de tornar o impacto dessas indústrias ao meio ambiente cada vez menor.

2. METODOLOGIA

A Argila Chocobofe utilizada neste trabalho foi cedida pelo LABNOV (Laboratório de Desenvolvimento de Novos Materiais) da Unidade Acadêmica de Engenharia Química (UAEQ) da Universidade Federal de Campina Grande – UFCG e os corantes reativos azul BF-5G, vermelho BF-4B e amarelo BF-3R foram fornecidos pela empresa Texpal. A argila foi caracterizada por difratograma de Raios-X através do método do pó, usando um difratômetro Shimadzu modelo XRD-6000 com radiação CuK α (λ = 1,5406Å) obtida por 40 kV em corrente de filamento de 30 mA, tamanho do passo de 0,02°, tempo por passo de 1,000 s, com velocidade de varredura de 2°/min e intervalo angular de 3 - 50°. O estudo de remoção destes corantes pela argila Chocobofe *in natura* foi realizado através de um planejamento composto central rotacional usando o *software Statistic* 7. A Tabela 1 mostra os valores reais e codificados que foram estudados.

Tabela 1 – Valores reais e codificados das variáveis estudadas no planejamento composto central rotacional

Variáveis	Código	Níveis				
variaveis		-1	0	+1	-1,41	+1,41
Razão massa de adsorvente (g)/ 100 mL de solução	X_1	0,25	0,50	0,75	0,15	0,86
рН	X_2	2,00	3,50	5,00	1,38	5,62

As soluções de corantes foram preparadas numa concentração de 1000 mg/L e a partir desta solução mãe foram obtidas as soluções com concentração de 50 mg/L, de cada corante. O pH das soluções foram medidos e ajustados com um medidor de pH modelo TEC-11 da Tecnal e usando soluções de ácido nítrico e/ou hidróxido de sódio, quando necessário, de acordo com o planejamento experimental. Os ensaios de banho finito foram realizados em um agitador orbital modelo TE-420 da TECNAL na temperatura de 28°C sob agitação de 180 rpm durante 24 horas. Após o tempo de equilíbrio, as soluções foram centrifugadas por 10 minutos numa rotação de 3000 rpm numa centrífuga modelo EEQ-9004/B da Edutec e a concentração das soluções após o tempo de equilíbrio foram determinadas por espectrofotometria utilizando o Espectrofotômetro GEHAKA modelo UV/Vis-340G. O percentual de remoção foi obtido pela Equação 1, sendo Co a concentração inicial da solução e Ceq a concentração de equilíbrio.

$$\%Rem = \frac{C_0 - C_{eq}}{C_0} \times 100 \tag{1}$$

3. RESULTADOS E DISCUSSÕES

A Figura 1 apresenta o difratograma de Raios-X da argila Chocobofe *in natura*. Observa-se a presença dos picos característicos dos argilominerais do tipo esmectíticos em 2θ aproximadamente igual a 5°, bem como a presença dos picos do quartzo, em 2θ entre 20° e 25°, característico do material.

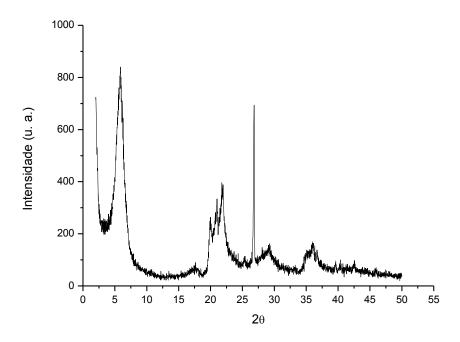


Figura 1 – Difratograma de Raios-X da argila Chocobofe *in natura*.

Os resultados obtidos para a percentagem de remoção nos ensaios de banho finito através da aplicação do planejamento composto central rotacional com triplicata no ponto central para o sistema de remoção dos corantes reativos Azul BF-5G, Amarelo BF-3R e Vermelho BF-4B pela argila Chocobofe *in natura* podem ser observados na Tabela 2. De acordo com os resultados obtidos com a argila Chocobofe *in natura*, os melhores percentuais de remoção foram alcançados no ensaio 11, para ambos os corantes estudados, onde se empregou uma razão de massa de adsorvente por volume de solução igual a 0,50 g/100 mL e um pH igual a 1,38.

Tabela 2 – Valores codificados do planejamento composto central rotacional e percentagem de remoção obtido

Experimento	X_1	X_2	%Remoção do Corante				
			Azul BF-5G	Amarelo BF-3R	Vermelho BF-4B		
1	-1	-1	79,84	47,39	73,23		
2	1	-1	87,65	53,60	84,09		
3	-1	1	70,35	17,06	27,22		
4	1	1	68,83	25,18	40,19		
5	0	0	72,34	33,48	52,68		
6	0	0	71,23	32,10	53,13		
7	0	0	71,54	32,18	55,02		
8	-1,41	0	67,76	27,54	42,54		
9	0	1,41	70,22	25,20	39,60		
10	1,41	0	74,42	34,57	56,57		
11	0	-1,41	91,73	56,08	90,58		

As superfícies de resposta e as curvas de contorno permitem visualizar de maneira mais geral a influência das variáveis do processo na percentagem de remoção. As Figuras 2, 3 e 4 mostram as superfícies de reposta e as curvas de contorno para a percentagem de remoção dos corantes reativos Azul BF-5G, Amarelo BF-3R e Vermelho BF-4B, respectivamente, pela argila Chocobofe *in natura*. A superfície de resposta e as curvas de contorno para a percentagem de remoção da argila Chocobofe *in natura* para o corante reativo Azul BF-5G (Figura 2) mostram que para o menor valor de pH e para a maior razão de adsorvente por volume de solução tem se a percentagem de remoção aumentada. Fixando-se a razão de adsorvente por volume de solução no maior nível e variando o pH do nível superior para o inferior, tem-se um aumento da percentagem de remoção. Fixando-se, agora, o pH no nível superior, o aumento da percentagem de remoção se dá pela variação da razão de adsorvente por volume de solução do nível inferior para o superior. Ensaios com diminuição do valor de pH e aumento da razão de adsorvente por volume de solução, são os que mais influenciam positivamente sobre a percentagem de remoção. Este mesmo comportamento é demonstrado nas Figuras 3 e 4.

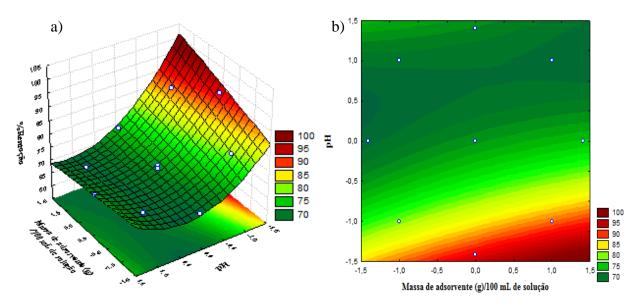


Figura 2 – Análise para o corante Azul BF-5G: a) Superfície de resposta em função dos valores codificados. b) Curvas de contorno do percentual de remoção em função dos valores codificados.

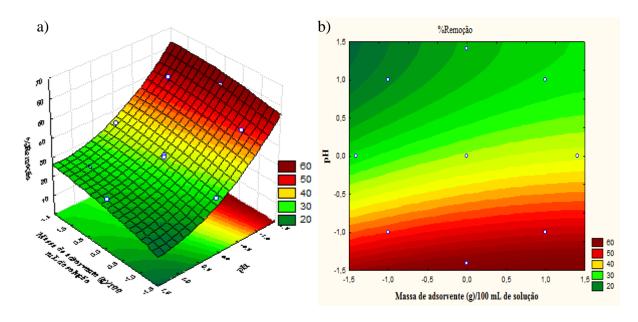


Figura 3 – Análise para o corante Amarelo BF-3R: a) Superfície de resposta em função dos valores codificados. b) Curvas de contorno do percentual de remoção em função dos valores codificados.

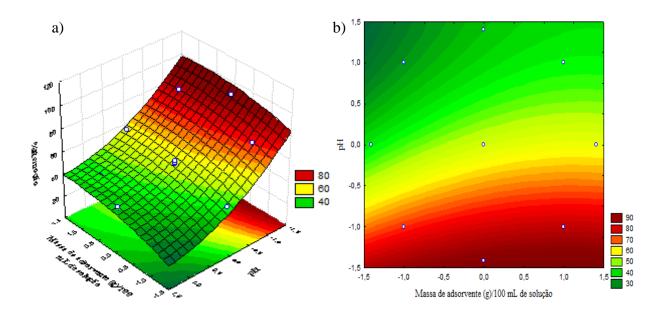


Figura 4 – Análise para o corante Vermelho BF-4B: a) Superfície de resposta em função dos valores codificados. b) Curvas de contorno do percentual de remoção em função dos valores codificados.

Da análise estatística, obteve-se os modelos matemáticos que relacionam a percentagem de remoção da argila Chocobofe *in natura* com os fatores estudados para os corantes reativos Azul BF-5G, Amarelo BF-3R e Vermelho BF-4B, os quais são mostrados nas Equações 2, 3 e 4, respectivamente.

$$\%Rem = 71,70 + 1,97 X_1 - 7,35 X_2 + 4,82 X_2^2 - 2,33 X_1 X_2$$
 (2)

$$\%Rem = 32,59 + 3,04 X_1 - 12,82 X_2 + 4,04 X_2^2$$
(3)

$$\%Rem = 53,61 + 5,47 X_1 - 20,28 X_2 - 2,33 X_1^2 + 5,48 X_2^2$$
(4)

Para verificar se os modelos propostos são significativos, preditivos ou se apresentam falta de ajuste foi realizada uma análise da variância dos dados obtidos. A Tabela 3 apresenta a análise de variância para os corantes reativos Azul BF-5G, Amarelo BF-3R e Vermelho BF-4B.

Tabela 3 – Análise de variância (ANOVA) para a percentagem de remoção de cada corante estudado

Corante	Fonte de variação	Soma Quadrática	Graus de Liberdade	Média Quadrática	F _{calculado} (95%)	F _{tabelado} (95%)	F _{cal} /F _{tab}
Azul BF-5G	Regressão	613,83	4	153,46	50,83	4,53	11,22
	Resíduos	18,11	6	3,02			
	Falta de Ajuste	17,46	4	4,36	13,30	19,25	0,69
	Erro puro	0,66	2	0,33			
	Total	631,94	10				
			% Variação explicada:			97,13	%
		%	% Máximo de variação explicável:				%
Amarelo BF-3R	Regressão	1476,65	3	492,22	61,66	4,35	14,17
	Resíduos	55,88	7	7,98			
	Falta de Ajuste	54,69	5	10,94	18,27	19,30	0,95
	Erro puro	1,20	2	0,60			
	Total	1532,53	10				
		% Variação explicada:			96,35	%	
		%	Máximo do	e variação ex	plicável:	99,92	%
Vermelho BF-4B	Regressão	3718,91	4	929,73	50,05	4,53	11,05
	Resíduos	111,46	6	18,58			
	Falta de Ajuste	108,37	4	27,09	17,57	19,25	0,91
	Erro puro	3,08	2	1,54			
	Total	3830,36	10				
Vei		% Variação explicada:				97,09	%
	% Máximo de variação explicável:						%

Os resultados da análise de variância (ANOVA) indica que os modelos propostos para os corantes reativos Azul BF-5G, Amarelo BF-3R e Vermelho BF-4B explica 97,13%, 96,35% e 97,09%, respectivamente, da variação em torno da média. Aplicando a distribuição de Fischer (teste F) aos modelos, foi possível observar que os modelos propostos para os corantes foram significativos, preditivo e não apresentam falta de ajuste (Barros Neto *et al.*, 2010).

4. CONCLUSÃO

Através do planejamento experimental foi possível verificar a influência dos parâmetros: relação entre massa de adsorvente por 100 mL de solução e o pH da solução, sobre a percentagem de remoção da argila Chocobofe *in natura* para os corantes reativos Azul BF-5G, Amarelo BF-3R e Vermelho BF-4B. De um modo geral observa-se uma diminuição dos percentuais de remoção com o aumento do pH e uma diminuição da relação entre a massa e o volume de solução. O percentual de remoção da argila Chocobofe *in natura* para os corantes reativos estudados seguiu a seguinte ordem: Azul BF-5G > Vermelho BF-4B > Amarelo BF-3R, sendo 91,73% o máximo obtido. A análise de variância apresentou um bom ajuste entre os valores observados e preditos, para ambos os corantes estudados, e os modelos propostos podem ser utilizados para estimar o percentual de remoção em outras condições experimentais dentro do domínio estudado neste trabalho. Assim, a argila Chocobofe *in natura* pode ser considerada um bom adsorvente, devido à sua disponibilidade na natureza, baixo custo e boa eficiência.

5. REFERÊNCIAS

BARROS NETO, B.; SCARMINIO, I. S.; BRUNS, R. E. Como fazer experimentos: Pesquisa e desenvolvimento na ciência e na indústria. Porto Alegre: Editora Bookman, 2010.

CHAVES, Karina. et al. Adsorção de índigo carmim em biomassas mortas de *aspergillus niger*. *Eng. Sanit. Ambient.*, v. 13, p. 351-355, 2008.

DABROWSKI, A. Adsorption - from theory to practice. *Adv. Colloid Interface Sci.*, v. 93, p. 135-224, 2001.

FUNGARO, D. A.; IZIDORO, J. C., BRUNO, M. Aplicação de material zeolítico sintetizado de cinzas de carvão como adsorvente de poluentes em água. *Eclét. Quím.*, v. 34, p. 45-50, 2009.

GUARATINI, C. C. I; ZANONI, M. V. B.. Corantes Têxteis. Quím. Nova, v. 23, p. 71-78, 2000.

GUPTA, V. K.; SUHAS. Application of low-cost adsorbents for dye removal – A review. *J. Environ. Manage.*, v. 90, p.2313–2342, 2009.

KUNZ, Airton. et al. Novas tendências no tratamento de efluentes têxteis. *Quím. Nova*, v. 25, p. 78-82, 2002.

RUTHVEN, D.M., *Principles of Adsorption and Adsorption Process*, New York: John Wiley&Sons, 1984.

SILVA, F. M.; SANTANA, S. A. A.; BEZERRA, C. W. B.; SILVA, H. A. S. Adsorção do corante têxtil azul de Remazol R por pseudocaule da bananeira (*Musa sp.*). *Cad. Pesqui.*, v. 17, p. 71-77, 2010.

SILVA, R. C. O.; OLIVEIRA, R.; ROCHAL, R. D. C. Utilização de casca de jabuticaba (*Plinia sp.*) como adsorventes na remoção de cromo (VI): planejamento fatorial, cinética e estudo do equilíbrio. *Tecno-Lógica*, v. 16, p. 19-24, 2012.