

HIDRÓLISE ENZIMÁTICA DE PAPEL DE ESCRITÓRIO DESCARTADO COM E SEM PRÉ-TRATAMENTO COM ÁCIDO SULFÚRICO DILUÍDO

J. M. T. S. ROCHA, B. R. A. ALENCAR, H. G. MOTA e E. R. GOUVEIA

Universidade Federal de Pernambuco, Departamento de Antibióticos E-mail para contato: estergouveia@gmail.com

RESUMO – O objetivo deste trabalho foi realizar hidrólises enzimáticas de papel de escritório descartado com e sem pré-tratamento com ácido sulfúrico diluído, visando a produção de bioetanol. Foram realizadas hidrólises com 2, 4, 8 10 % m/V de sólido. A quantidade de enzima utilizada foi a mesma independente do aumento da massa de papel. As concentrações de glicose e xilose foram quantificadas por cromatografia líquida de alta eficiência. Houve aumento das concentrações destes carboidratos à medida que aumentou a massa de papel até 8 % m/V. Não foi possível retirar amostra nas hidrólise com 8 ou 10 % m/V e sem pré-tratamento, uma vez que não ocorreu a liquefação do papel. Maiores concentrações carboidratos foram obtidas na hidrólise com pré-tratamento e 8 % m/V, apesar de o rendimento ter sido menor do que quando foi utilizado 2 % m/V, provavelmente devido à quantidade de enzima ter sido a mesma para ambos os casos.

1. INTRODUÇÃO

A tecnologia para a produção de etanol a partir de material lignocelulósico é baseada principalmente no pré-tratamento, hidrólise química ou enzimática, separação do produto de fermentação e destilação (Dubey et al., 2012). O papel é um material lignocelulósico, cuja composição química varia de acordo com a madeira da qual foi originado. Material lignocelulósico como papel de escritório contem 56 %, 14 % e 6 % de celulose, hemicelulose e lignina, respectivamente (Wang *et al.*, 2012).

A hidrólise enzimática da celulose é realizada por um conjunto de enzimas celulolíticas, composto de uma mistura de endo- β -1,4-glucanases, exo- β -1,4-glucanases e β -glucosidase (Palmqvist & Hahn-Hagerdal 2000). Estas enzimas atuam em diferentes sítios da cadeia celulósica de forma sinérgica: as exo-glucanases, também conhecidas como celobiohidrolases, atuam clivando ligações glicosídicas nas extremidades da cadeia, obtendo-se as unidades de celobiose; as endo-glucanases clivam regiões amorfas internas da cadeia celulósica e as β -

glucosidases clivam a celobiose em unidades de glicose (Galbe & Zacchi, 2002).

O objetivo deste trabalho foi realizar hidrólises enzimáticas com diferentes massas de papel de escritório descartado, sem e com pré-tratamento com ácido sulfúrico diluído, visando a produção de bioetanol.

2. MATERIAIS E MÉTODOS

2.1. Material Lignocelulósico

Foi utilizado papel de escritório descartado do Departamento de Antibióticos da UFPE.

2.2. Hidrólise Enzimática do Papel de Escritório Descartado

As hidrólises, com 2, 4, 8 e 10 % m/v de papel, foram realizadas em frascos de Erlenmeyers, com tampão citrato de sódio (pH igual a 4,8). Preparações comerciais de celulases (Celluclast 1.5 L – 2 mL; 119 FPU/mL) e β -glucosidase (1 mL), ambas da Novozyme foram utilizadas. A atividade enzimática da Celluclast 1.5 L foi determinada com unidade de papel de filtro por mL segundo o método de Ghose (1987). Os frascos, em todas as hidrólises enzimáticas, foram mantidos em mesa incubadora rotativa, a 50°C e 150 rpm. Após a filtração das amostras em membrana de 0,45 μ m, os filtrados foram utilizados para a quantificação de glicose e xilose por cromatografia líquida de alta eficiência.

Nas hidrólises com pré-tratamento, o material foi inicialmente colocado em frascos de Erlenmeyer, onde foram adicionados 100 mL de H₂SO₄ a 1 % V/V. O frasco foi acondicionado em mesa incubadora rotativa, a temperatura de 50°C e rotação de 150 rpm, durante 3 horas. Após este período, o material foi centrifugado por 10 minutos, a 10000 rpm e o decantado foi utilizado nas hidrólises enzimáticas.

2.3. Quantificação de Carboidratos

As amostras, retiradas ao final de cada hidrólise enzimática, foram analisadas por meio da técnica de Cromatografia Líquida de Alta Eficiência (CLAE), utilizando uma coluna Aminex HPX-87H⁺ (300 mm x 7,8 mm, Bio-Rad Laboratories, Richmond, CA, USA), a 60°C e detecção de índice de refração. Foram realizadas injeções de 5 μL, com vazão de 0,6 mL/min, utilizando como fase móvel H₂SO₄ a 5 mM. As concentrações de açúcares redutores foram determinadas pelo método do ácido dinitrosalicílico (Miller, 1959).

2.4. Rendimento

O rendimento das hidrólises com relação à formação de glicose e xilose foi determinado pela equação (1).

$$Y(\%) \square \frac{\text{ART..}V}{\text{m}}.100 \tag{1}$$

ART: concentração de açúcares redutores (em g/L);

V: volume da mistura reacional (em L);

m: massa de papel (em g).

3. RESULTADOS

As concentrações de glicose e de xilose aumentaram com o acréscimo da massa de papel (Figura 1), nas hidrólises sem pré-tratamento, quando foram utilizados 2 ou 4 g de papel. O maior aumento foi obtido na concentração de glicose. Nas hidrólises com 8 ou 10 % m/V e sem pré-tratamento, não ocorreu a liquefação do papel, o que impossibilitou a retirada de amostra em todo o período avaliado.

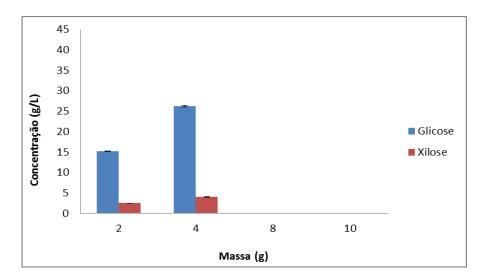


Figura 1. Concentração de glicose e de xilose após 96 horas de hidrólise e sem prétratamento.

As maiores concentrações de glicose e xilose foram obtidas na hidrólise com prétratamento e utilizando 8 % m/V. Tanto em 2 % m/V, quanto em 4 % m/V houve uma redução nas concentrações dos carboidratos, nas hidrólises com pré-tratamento (Figura 2) em relação aos resultados sem pré-tratamento (Figura 1).

Figura 2. Concentração de glicose e de xilose após 96 horas de hidrólise e com pré-tratamento.

Apesar do aumento da carga de sólidos de 8 para 10 % m/V, houve menor formação de glicose quando foi utilizado 10 % m/V. Isso ocorreu provavelmente devido à carga enzimática ter sido a mesma em todas as hidrólises, independente do aumento do substrato (Figura 2).

Os rendimentos são apresentados na Figura 3. Observa-se que houve maior rendimento com 2 % m/V, quando não foi utilizado pré-tratamento. O rendimento com 4 % m/V também sem pré-tratamento foi menor do que com 2 % m/V, o que possivelmente ocorreu por ter sido utilizada a mesma quantidade de enzimas para uma maior massa de papel. Por outro lado, o rendimento com o pré-tratamento e utilizando 8 g de papel foi semelhante ao rendimento obtido por 4 g com pré-tratamento. O menor rendimento foi obtido com 10 % m/V.

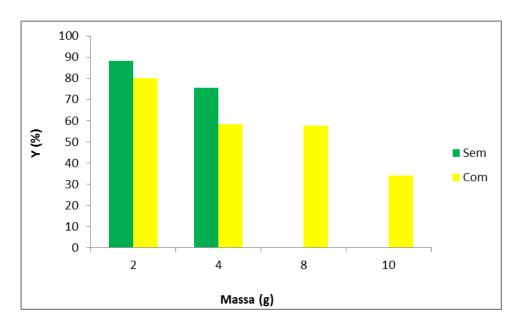


Figura 3 – Rendimento das hidrólises enzimáticas, com 96 horas, sem e com prétratamento.

No estudo da hidrólise enzimática de papel de escritório descartado, quatro fatores foram avaliados: o tempo de hidrólise, a carga enzimática, a adição de surfactante e o pré-tratamento com ácido fosfórico (Chu e Feng, 2013). O rendimento máximo de açúcar foi 82 % para 50 mg de papel, com 20 horas de hidrólise, com pré-tratamento com ácido fosfórico, mas sem adicionar surfactante. Por outro lado, a hidrólise enzimática de um papel offset, semelhante ao papel utilizado neste trabalho, foi estudada por Brummer *et al.* (2013), os quais obtiveram rendimento de apenas 18,8 %. Isso pode ter ocorrido devido ao pré-tratamento ter sido realizado apenas por moagem mecânica e lavagem com água destilada.

O pré-tratamento com ácido sulfúrico diluído foi fundamental para as hidrólises enzimáticas com alta carga de sólidos (8 ou 10 % m/V). Na produção de bioetanol, a concentração inicial de açúcares fermentescíveis é um fator preponderante para a obtenção de maior concentração do produto. Daí a seleção de 8 % m/V para a carga de enzimas utilizada neste trabalho, uma vez que com esta condição foi obtida a maior concentração de glicose e xilose.

6. REFERÊNCIAS

BRUMMER, V.; JURENA, T.; HLAVACEK, V.; Omelkova, J.; Bebar, L.; Gabriel, P.; Stehlik, P.; Enzymatic hydrolysis of pretreated waste paper – Source of raw material for production of liquid biofuels. *Bioresource Technology*, v. 152, p. 543-54, 2014.

CHU, K. H.; FENG, X. Enzymatic conversion of newspaper and office paper to fermentable sugars. *Process Safety and Environmental Protection*, v. 9, p. 123–130, 2013.

DUBEY, A. K.; GUPTAB, P. K.; GARGA, N.; NAITHANIB, S. Bioethanol production from waste paper acid pretreated hydrolyzate with xylose fermenting *Pichia stipitis*. *Carbohydrate Polymers*, v. 88, p. 825–829, 2012.

GALBE, M. & ZACCHI, G. A review of the prodution of ethanol from softwood. *Applied Microbiology and Biotechnology*, v. 59, p. 618-628, 2002.

GHOSE, T. K. Measurement of cellulase activities. *Pure Appl Chem*, v. 68, p. 59:257–68, 1987.

MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. *Anal. Chem.*, v. 31, p. 420–428, 1959.

PALMQVIST, E. & HAHN-HAGERDAL, B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. *Bioresource Technology*, v. 74, p. 25-33, 2000.

WANG, L.; SHARIFZADEH, M.; TEMPLER, R.; MURPHY, J. Bioethanol production from various waste papers: Economic feasibility and sensitivity analysis. *Applied Energy*, v. 111, p. 1172-1182, 2012.