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ABSTRACT – Three nonlinear model predictive control (NMPC) strategies are compared 

on the control of the isothermal CSTR (continuous stirred tank reactor) with van der 

Vusse kinetics, which is largely employed in control studies. This reactor exhibits sign 

change of the process static gain and nonminimum phase dynamic behavior. The first 

strategy considers a NMPC coupled with a state estimator. The second one uses neural 

networks as the internal NMPC multivariable model. In the last one, a proposed approach 

for the adaptation of the linear MPC (model predictive control) to nonlinear systems is 

employed in order to generate predictions through successive local linearizations around 

steady states. The results show that the NMPC with state estimation stabilized the system 

at the expense of higher computational cost. The strategy based on neural networks 

demanded a shorter time for the calculation of the control actions, allowing the use of a 

shorter sampling time. The adaptive MPC stabilizes the nonlinear system around points 

which are unstable under linear MPC control, demanding less computational effort than 

the NMPC with a state estimator. 

1. INTRODUCTION 

If chemical processes are operated within limited ranges where nonlinearities are not relevant, 

satisfactory regulatory control may be obtained. However, process changes, such as changes in the 

characteristics of the feed, may drive the operation to regions of pronounced nonlinearity. In these 

regions, the regulatory control may not be able to perform accordingly, as it may be faced with 

conditions for which it was not designed. For instance, processes that operate normally under linear 

predictive control may suffer changes in the process gains as well as in the trajectories predicted by 

the controller leading to significant difficulties. 

Process losses due to those adversities are relevant. Therefore, adequately treating of the 

nonlinearities in chemical processes is an important subject that has been being studied by some 

authors (Qin & Badgwell, 2000; Duraiski, 2001; Glavicet al. 2002; Cervantes et al., 2002; Benamor et 

al., 2004; De Oliveira & Camponogara, 2010; Manenti, 2011). Several methodologies have been 

developed aiming the implementation of NMPC strategies with viable execution time and optimal 

behavior. Neural network based NMPCs are among the strategies that tried to reduce the 

computational time through the use of models that do not need to be numerically integrated. This kind 

of model is able to provide future response predictions using known (past and current) process and 

(past) controller data. Akpan & Hassapis (2011) and Salahshoor et al. (2013) have recently employed 
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this strategy to design nonlinear controllers. Another line of work employs successive linearizations 

in the approximation of a nonlinear model, as performed by Duraiski (2001). Finally, the nonlinear 

optimization problem of the MPC can be solved using classic optimization algorithms such as 

interior-point algorithm and sequential quadratic programming, as in the works of Rawlings & Mayne 

(2009) and Lopez-Negrete et al. (2012).  

This work compares the strategies based on neural networks, resolution of nonlinear predictive 

control through the interior-point algorithm employing sequential methodology, and the proposed 

successive linearizations. The algorithms are compared in terms of complexity for the resolution of 

the problem and attained performance. The predictive control problem is formulated and the 

employed algorithms are described in next section. Then, the comparisons are performed and the 

results discussed in the following sections. 

2. FORMULATION AND DIFFERENT APPROACHES FOR THE 

RESOLUTION OF THE NMPC PROBLEM 

The NMPC problem (Problem P1) consists on the minimization of the following objective 

function: 

 (     )  ∑  ( ( )  ( ))   ( (   ))

     

   

 (1) 

subject to the following constraints (i = k,…,k+N1): 

 (   )   ( ( )  ( )) (2) 

 ( )   ( ( )) (3) 

 ( )    (4) 

 ( )    (5) 

 (   )       (6) 

In this formulation, the control actions are applied using the receding horizon approach, where 

only the first action, of the   calculated ones, is applied. Therefore, given the sequence calculated at 

the current time: 

  ( )     (   )   (   )     (     )  (7) 

The implemented control action is given by: 

 ( )    (   ) (8) 
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In order to guarantee the stability of the MPC controller, the term  ( (   )), called terminal 

cost function, and the terminal state set,   , of Equation (6), are of fundamental importance (Mayne et 

al., 2000). Keerthi & Gilbert (1988) stated that a terminal state equality constraint guarantees stability 

if the optimization problem is feasible at the first instant. Later, Jadbabaie & Hauser (2001) showed 

that the use of a terminal state equality constraint is not required.They demonstrate that the stability of 

the receding horizon control can be achieved using a  terminal cost, which can be any general non-

negative function. Moreover, the implementation of the terminal constraint can increase the 

computational burden of the optimization problem, possibly demanding longer computational times 

for a given tolerance than the sampling period (Allgöwer et al., 2004). Limon et al. (2006) showed 

that weighting the terminal cost enlarges the domain of attraction of the MPC, proving also that, for 

any state of the system that can reach   , there is a weight so that the state will go inside the attraction 

region of the controller.  

2.1. Direct resolution using sequential method 

In the sequential method (Biegler & Hughes, 1985), two computational routines are employed 

separately, one for the integration of the system and another for its optimization, being the 

communication between them made through the trajectories provided by the numerical integration 

algorithm. In this strategy, only the control actions are discretized, being the trajectories of the system 

always feasible. In the present work, the interior-point algorithm of the MATLAB optimization 

toolbox (Mathworks, 2008) was employed for optimization. In this approach, the more 

computationally expensive step is the system integration, requiring efficient integration routines. The 

DASSLC (Secchi, 2012) routines were used here with that purpose. 

2.2. Resolution based on adaptive MPC 

Considering a process with nonlinear characteristics, whose state-space model can be 

described by Equation (2), the adaptive approach proposed in the present work starts by finding a 

reference steady-state for the vector of manipulated variables at each sampling time, that is, 

considering that   will be kept constant for any time higher than the sampling time, the analytical or 

numerical steady state solution of the problem  ( ( )  ( ))    is determined. Then, the model 

described by Equation (2) is linearized around this reference state, resulting in a linear state space 

model: 

  (   )   ( )  ( )   ( )  ( ) (9) 

  ( )   ( )  ( ) (10) 

where   indicates a vector of deviation variables from the reference state. Briefly, at each sampling 

time, the vector of manipulated variables is updated by the optimization and the matrices of the state 

space model are recalculated, in order to provide one-step ahead predictions with smaller error when 

compared to the process measurements. This procedure is repeated to generate predictions over the 

prediction horizon. As the dimension of the decision variables vector is equal to the control horizon, 

the last control action is kept constant until the prediction horizon is reached. This way, based on the 
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prediction provided by Equation (9), it is possible to obtain the optimal control actions by solving P1. 

In this approach, the nonlinear model, Equation (2), is replaced by Equations (9) and (10), so that the 

integration of the nonlinear equation system is unnecessary. 

2.2. Resolution using a neural network model 

The controller proposed here uses previously fitted neural networks to predict the future 

behavior of the controlled variable from past and present data of process and manipulated variables. 

The patterns for fitting and validation of the neural networks were generated by open loop 

simulations, where the inputs were randomly varied. Multilayer perceptrons (MLP) were used. Linear 

input and output layers and a hidden layer with hyperbolic tangent activation function were 

considered. Equation (11) presents the calculated output of a neuron j of a hidden layer k. 

      (∑          

    

   

     ) (11) 

 ( )  
(      )

(      )
 (12) 

where the parameters w and   are respectively the interlayer weights and neuron biases. 

For finite horizon predictions, the neural networks are recursively employed to obtain N 

predictions. This way, the predicted output vector is used in the calculation of the optimal control 

actions by solving P1. 

3. RESULTS AND DISCUSSION 

The isothermal CSTR with van der Vusse kinetics was used as case study. This system is 

largely studied due to its nonlinear characteristics and is described by: 

   

  
 

 

 
(    

   )           
  

(13) 

   

  
 

 

 
(   )            

(14) 

where    and    are output molar concentrations of reactant A and product B, respectively;     
 is 

the input molar concentrations of reactant A; F is the volumetric flowrate; V, the volume; and ki, the 

reaction rate constants. The parameters of the model are presented in Trierweiler (1997). The steady 

state profile of the component B concentration (  ), for varying flowrate ( ), is presented in Figure 

(1), where the change in the sign of the static gain can be observed.  
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Figure1Steady state (SS) concentration of component B vs. flowrate. 

The objective function is given by Equation (15). A SISO (single input, single output) 

problem was assumed. The weighting parameters in the deviation of the variables were carefully 

tuned. A sampling period of 0.008 h, a predictive horizon of 25 and a control horizon of 5 were 

chosen. 

 (   )  (     )
 
(     )                 ( ( )     ( ))

 
 (15) 

Two tests, with three setpoint (SP) changes each, were conducted. In the first one, shown in 

Figure 2, the system was initially at a SS to the left side of the maximum Cb concentration in Figure 1, 

when the setpoint was sequentially changed first to a reachable value, then to the maximum 

concentration and finally to an unreachable value. A similar experiment was conducted in Figure 3, 

with the system initially at a SS to the right of the maximum concentration. Table 1 presents two 

indices for these tests: the integral of the squared error (ISE) and the manipulation effort, which is 

given by the summation of the variations of the manipulated variable weighted by the sampling 

period. The results show that the linear controller can lead the system to instability. On the other side, 

the controller based on successive linearizations managed to keep the system stable at the expenses of 

a relatively small computational burden, because it does not require the integration of the differential 

equations system, as it is also the case for the linear controller. The adaptive controller also had less 

control effort than the NMPC.  

In Figures 2 and 3, it can be seen that the controller based on neural networks (composed of 4-

6-1 neurons in the forward layers) presented results that approximated the ones of the controller that 

employed the full model based on the integration of the differential equations, however the presumed 

cost to design (and eventually update) the neural model can be expected to be higher than linearizing 

the system at each sampling time. For the experiments with unreachable setpoint, the adaptive MPC 

approximated the setpoint in a stable way, keeping a constant offset and guaranteeing the stability of 

the system. The linear MPC was unable to keep stability due to its linear nature. The benefits 

provided by the adaption of the internal model of the MPC are more evident when the nonlinearity is 

stronger as in the region of gain inversion. The stability under adaptive control, despite the offset, 

allows the process to be operated for longer periods of time. The offset presented by the adaptive 

approach can be minimized through a deeper investigation of the weighting parameters employed in 
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the objective function.  

 
Figure 2  Comparison between controllers for an initial steady-state to the left of the maximum. 

 

 

Figure 3Comparison between controllers for an initial steady-state to the right of the maximum. 
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Table 1Performance indices of the controllers  

 Left side Right side 

Adaptive MPC 

ISE Manipulation 

effort 

ISE Manipulation 

effort 

Reachable SP 0.00024 0.41506 0.00008 1.28690 

Cb_max SP 0.00783 0.45509 0.00123 7.35780 

Unreachable SP 0.00906 0.00208 0.00130 0 

NMPC     

Reachable SP 0.00049 1.88555 0.00013 109.330 
Cb_max SP 0.00094 2.17909 0.00038 11.7840 
Unreachable SP 0.00074 0.09733 0.00069 0.03120 
Neural network NMPC 

Reachable SP 0.00039 0.25401 0.00018 0.66246 

Cb_max SP 0.00140 0.91013 0.00116 4.12949 

Unreachable SP 0.00083 0.00319 0.00072 0.05598 

Linear MPC     

Reachable SP 0.00020 0.5518 0.00008 1.25000 
Cb_max SP 0.00150 2.0073 1.25000 8.20000 
Unreachable SP unstable unstable unstable unstable 

4. CONCLUSIONS 

Linear MPCs are currently largely used in the industry. However, their nonlinear counterparts 

still need improvements related to implementation and performance aspects in order to gain more 

applications. In this work, up-to-date NMPC algorithms were improved (in the case of the adaptive 

MPC) and compared. The superiority of the NMPC against the linear version was shown in regions of 

pronounced nonlinearity. It was also demonstrated that the NMPC approaches based on simplified 

models of the process (adaptive linear and neural networks) demand a smaller computational burden 

than the ones that depend on the integration of the full model, with similar performance. 
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