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ABSTRACT – Natural convection in superimposed layers of fluids heated from below is 

commonly observed in many industrial and natural situations, such as crystal growth, co-

extrusion processes and atmospheric flow. The stability analysis of this system reveals a 

complex dynamic behavior, including potential multiplicity of stationary states and 

occurrence of periodic regimes. In the present study, a linear stability analysis (LSA) is 

performed to determine the convection onset as a function of imposed boundary 

conditions, geometrical configuration and specific perturbations with different 

wavenumbers. To investigate the effects of the non-linear terms neglected by the linear 

stability analysis, a direct numerical simulation of the full nonlinear problem is performed 

with the use of CFD techniques. The numerical simulations results show an excellent 

agreement with the LSA results near the convection onset and an increase in the deviation 

as the Rayleigh number increases beyond the critical value. 

 

  

1. INTRODUCTION 

Single layer Rayleigh-Bénard (RB) convection is one of the most widely studied systems in the 

transport phenomena field, mainly because the large number of applications and the relative 

simplicity of the governing equations. This system represents a natural convection condition 

occurring in a horizontal layer of fluid where energy is added from below and removed from above, 

giving rise to cellular structures called Bénard cells (or convective cells) when the buoyancy forces 

are sufficiently stronger than the viscous forces.  

The theoretical basis of this phenomenon was presented by Lord Rayleigh in 1916, based on 

experimental results realized by Bénard 16 years before. Rayleigh showed that the system stability is 

governed by a dimensionless parameter, later known as the Rayleigh number (Ra), which represents 

precisely the ratio between buoyancy and viscous forces. Whenever the Rayleigh number is below a 

certain critical value, the heat transfer will occur basically by conduction. However, when this critical 

value is exceeded the system becomes unstable and evolves to a different equilibrium state where 
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natural convection is the main heat transfer mechanism. In a bifurcation theory terminology, in this 

condition a bifurcation occurs and the critical point correspond to a bifurcation point. Through linear 

stability analysis, it is possible to define the critical Rayleigh values (𝑅𝑎𝑐), as well as the wavenumber 

associated with the perturbation that first turns the system unstable (𝛼𝑐). As presented by Pellew and 

Southwell (1940), for unbound two-dimensional systems with Newtonian fluids, the critical 

parameters depend only upon the boundary conditions applied to the velocity vectors at both 

horizontal boundaries, which can be treated as rigid walls or free surfaces. The values obtained 

considering the possible combinations are summarized in Table 1, showing that the presence of a 

rigid wall significantly increases the critical parameters.  

Table 1 – Critical parameters for single layer Rayleigh-Bénard convection (Pellew and Southwell, 

1940) 

Boundary condition 𝑅𝑎𝑐  𝛼𝑐  

Rigid – rigid 1707.8 3.117 

Rigid – free 1100.7 2.682 

Free – free 657.5 2.221 

 

The presence of a second fluid layer significantly increases the system complexity and can 

affect the stability in many ways, as for example through competition of convective modes in each 

layer, control of one layer over the other one, interface deformation and unstable convective modes 

controlled by interfacial tension gradients. Due to this complex dynamical behavior and the large 

number of governing parameters, the stability of double layer Rayleigh-Bénard convection is still 

poorly understood. Despite this, as mentioned by Anderek et al. (1998), systems where stratification 

occurs due to differences in density or thermal properties are fairly common in the analysis of 

geophysical systems, atmospheric flow, astrophysics and industrial processes. The study of this 

system was originally motivated by the hypothesis that the Earth’s mantle is stratified as a result of 

seismic discontinuity observed at a depth of approximately 660 km. Examples of technological 

applications where double-layer RB convection can take place are liquid encapsulated technics for 

crystal growth (Li et al., 2009), glass and dispersion materials processing (Prakash, 1997) and micro-

channel chemical reactors (Fudym et al., 2007). 

The stability analysis of double-layer RB convection needs to consider several mechanisms that 

can turn the system unstable, and in most of the cases these mechanisms are associated with 

substantially different time and length scales. Therefore, a global analysis considering all the possible 

mechanisms can not be easily reached using a single method. Among the most used methods of 

hydrodynamic stability analysis, the linear analysis using normal modes has been receiving much 

attention in the past decades due to their relative simplicity and flexibility. However, this method has 

intrinsic limitations derived by the fact that high order terms are neglected due to the linearization 

process. In the present study, direct numerical simulation (DNS) of the full non-linear set of 

governing equations using modern computational fluid dynamic (CFD) based techniques will be 

performed and compared to the results obtained through linear stability analysis (LSA).  
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2. MATHEMATICAL MODEL 

A scheme of the geometrical configuration considered is shown in Figure 1. The system 

consists of two layers of immiscible fluids confined between horizontal rigid walls. The system is 

assumed to be unbound in the z and x- directions; however perturbations in these directions are also 

included in the model. The thickness of the bottom layer, 𝑑1, is used as length scale, so that the 

bottom wall is placed at the dimensionless position 𝑦 = −1 and the upper wall is placed at 𝑦 =
𝑑2/𝑑1 = 𝑑0. Both walls are considered to be at constant temperatures and we will limit our analysis 

to the case that 𝑇𝐻 > 𝑇𝐶  will be analyzed. The non-deformed interface is positioned at 𝑦 = 0 and the 

interface deformation is evaluated by the function 𝜂 = 𝜂(𝑥, 𝑧, 𝑡). 

 

Figure 1 – Physical domain 

Each layer has its own set of governing equations, being these equations linked by the boundary 

conditions at the interface. It is assumed that the flow in both layers is incompressible, the fluids have 

Newtonian behavior and the Boussinesq approximation is valid for the entire range of conditions 

evaluated. In this condition, the governing equations are the standard Navier-Stokes and energy and 

mass conservation equations. Boundary conditions of no-slip and no-penetration are applied to the 

velocity vector at the solid walls (𝑦 = −1 and 𝑦 = 𝑑0), while fixed temperatures are defined at the 

same locations. At the interface (𝑦 = 𝜂), conditions of normal and tangential velocity continuity, as 

well shear and normal stress balance are used to determine the velocity field, while for the energy 

conservation equation conditions of temperature and heat flux continuity are assumed. 

In order to characterize  the stability proprieties of a given base state through linear stability 

analysis, the variables in the set of governing equations are expressed as a sum of the base state and 

an infinitesimal perturbation, so that the dynamic behavior of these perturbations can be used to 

define the state stability: if the perturbations decrease over time and eventually disappear the system 

will be stable, otherwise it will be unstable. In the linear stability analysis only infinitesimal 

perturbations are considered, so that all the high order terms can be neglected. Moreover, non-

dimensional variables will be introduced by using 𝑑1 as length scale, 𝜅1/𝑑1  as a scale to the 

perturbation velocity, 𝜌1𝜐1𝜅1/𝑑1
2 to the pressure and 𝜓1𝑑1 as a scale to the temperature, where 𝜅1, 𝜌1 

and 𝜐1are, respectively, the thermal diffusivity, density and kinematic viscosity of the bottom layer 

and 𝜓1is the static temperature gradient between the non-deformed interface and the bottom wall. 
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The base state represents a solution to the set of governing equations and the related boundary 

conditions. To determine the onset of natural convection in a double layer RB convection system, the 

base state corresponds to the stationary fluid with a linear temperature profile associated with heat 

transfer only by conduction. The equilibrium point can be considered stable if is stable respect to any 

possible infinitesimal perturbation, differently it is unstable. As described by Chandrasekhar (1961), 

one way to analyze the stability is express the perturbed variables in terms of normal modes. For 

example, a generic variable 𝑘 can be expressed as: 

𝑘(𝑥, 𝑦, 𝑧, 𝑡) = �̅�(𝑦)𝑒𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡)        (1) 

Where �̅�(𝑦) is the eigenfunction associated to the original variable, 𝛼 and 𝛽 are real wavenumbers in 

the x and z-directions, respectively, and 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 is the wave velocity, where 𝜔𝑟 is the phase 

velocity and 𝜔𝑖 the perturbation temporal growth rate. A condition when 𝜔𝑖 < 0 represents a dumped 

perturbation, while when 𝜔𝑖 > 0 the perturbation will grow and so the base state will be unstable. The 

condition 𝜔𝑖 = 0 is called neutral stability.  

After some manipulation the pressure can be eliminated and the equations governing of the 

system stability in the bottom layer can be expressed as:  

−
𝑖𝜔

𝑃𝑟
(

𝑑2𝜙1

𝑑𝑦2
− 𝑘2𝜙1) =

𝑑4𝜙1

𝑑𝑦4
− 2𝑘2

𝑑2𝜙1

𝑑𝑦2
+ 𝑘4𝜙1 − 𝑘2𝑅𝑎𝜃1 

(2) 

−𝑖𝜔𝜃1 − 𝜙1 =
𝑑2𝜃1

𝑑𝑦2
− 𝑘2𝜃1 

(3) 

where 𝜙1 and 𝜃1 represent the perturbation of the vertical velocity and temperature, respectively,  𝑘2 

is defined as 𝑘2 = 𝛼2 + 𝛽2 and the Prandtl and Rayleigh numbers are given by:  

𝑃𝑟 =
𝜈1

𝜅1
                   𝑅𝑎 =

𝛽1𝑔𝜓1𝑑1
4

𝜐1𝜅1
 

(4) 

where 𝛽1  is the coefficient of thermal expansivity of the bottom layer and g is the gravitational 

acceleration. The equations for the upper layer (denoted by the subscript 2) can be expressed as: 

−
𝑖𝜔

𝑃𝑟
(

𝑑2𝜙2

𝑑𝑦2
− 𝑘2𝜙2) =

𝜈2

𝜈1
(

𝑑4𝜙2

𝑑𝑦4
− 2𝑘2

𝑑2𝜙2

𝑑𝑦2
+ 𝑘4𝜙2) −

𝛽2

𝛽1
𝑘2𝑅𝑎𝜃2 

(5) 

−𝑖𝜔𝜃2 −
𝜓2

𝜓1
𝜙2 =

𝜅2

𝜅1
(

𝑑2𝜃2

𝑑𝑦2
− 𝑘2𝜃2) 

(6) 

 For the sake of brevity, the boundary conditions will not be presented here, being the reader 

directed to the studies of Rasenat et al. (1988) and Cardin et al. (1992) for more details. It is sufficient 

to say that three dimensionless numbers appear in the final expressions: the Marangoni (𝑀𝑎) and 
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Schmidt (𝑆) numbers and a Rayleigh number based on the density difference between the upper and 

bottom layers (𝑅𝑎𝜌). These numbers are defined as: 

𝑀𝑎 = −
𝑑𝛾

𝑑𝑇

𝜓1𝑑1
2

𝜐1𝜌1𝜅1
                   𝑆 =

𝛾𝑑1

𝑑1𝜌1𝜅1
                   𝑅𝑎𝑝 =

𝑔𝑑1
3

𝜐1𝜅1
(1 −

𝜌2

𝜌1
) 

(7) 

where 𝛾 is the interfacial tension and 𝑇 is the temperature. 

 To solve the generalized eigenvalue problem, a pseudo-spectral method using Chebyshev 

polynomials was applied. The DNS analysis based on CFD techniques was performed using the 

FLUENT 14.0 software, where the set of governing equations is discretized through a finite volume 

approach. Appropriated mesh size and control parameters were used. To evaluate the interface 

deformation the Volume of Fluid (VOF) method was used. More details about this method can be 

found in Fontana et al. (2013) and Mancusi et al. (2014).  

 

3. RESULTS 

 The physical properties were chosen so that the Rayleigh number in both layers is the same 

when 𝑑0 = 1 . Moreover, the conditions 𝑀𝑎 = 𝑆 = 0  (no thermo-capillary effect) and 𝑃𝑟 = 1  are 

assumed and unless otherwise mentioned, 𝑅𝑎𝜌 = 105. In this condition the interface deformation can 

be neglected.  

 Figure 2 shows the stability limit curve obtained through LSA, where the critical Rayleigh 

number is presented as a function of the depth of the upper  layer (𝑑0). Moreover, the points obtained 

by CFD simulation for several 𝑑0 values are reported in Fig.2 too. These points classified as stable or 

unstable depending upon by the presence or not of convective motion. 

 

Figure 2 – Comparison between stability limits obtained through LSA (line) and DNS (points).  

As can be seen in Figure 2, the limits defined by the linear stability analysis are in excellent 
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agreement with the results of the CFD simulations, with only one stable point appearing in the 

unstable region. However, in the limit of the critical value the convection onset is not easily defined in 

the CFD simulations, since an infinite theoretically time would be necessary to develop a stationary 

convective state. It is worth to mention that the 𝑅𝑎𝑐 values obtained in the cases 𝑑0 = 0 and 𝑑0 = 1 

correspond exactly to the values of critical Rayleigh number for single layer RB convection when, 

respectively, conditions of rigid – rigid  walls and rigid wall – free surface are considered (see Table 

1). This shows a complete consistence between the double and single-layer models.  

Besides the convection onset, the LSA allows to obtain the spatial distribution of the velocity 

and temperature fields through eigenfunctions. A comparison between these eigenfunctions and the 

actual velocity and temperature profiles (deviation from the base state) obtained by the CFD 

simulations are shown in Figure 3 for 𝑑0 = 0.8 and 𝑅𝑎 close to the critical value. 

 

Figure 3 – Comparison between eigenfunctions obtained through LSA and velocity and temperature 

profiles obtained with CFD simulations.  

The profiles obtained by LSA and the CFD simulation of full nonlinear problem show an 

excellent agreement, in particular the velocity profiles. Despites a small deviation in the magnitude in 

comparison with the CFD results, the LSA eigenfunctions of temperature deviation shows the same 

tendency. The small change in Rayleigh number does not affect significantly the profiles in any case.  

One of the most restrictive hypothesis of the LSA using normal modes is that the interface 

deformation is not strong enough to a point where the high order terms cannot be neglected. In other 

words, this condition can be expressed as 𝜂 ≪ 𝑑1. The interface deformation is controlled by the 

normal stress balance, in particular by the value of 𝑅𝑎𝜌. If this value is not large enough to keep the 

interface stable, surface waves will emerge and eventually the system undergoes to an unstable state. 

The condition 𝑅𝑎𝜌 < 0 will not be considered since it represents, by definition, a Rayleigh-Taylor 

instability.  

Vertical velocity and temperature deviation profiles, obtained through CFD simulations, are 
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presented in Figure 4 for  𝑅𝑎𝜌 = 103 and 𝑑0 = 1, together with the interface position for several 

values of 𝑅𝑎 > 𝑅𝑎𝑐. To facilitate the results visualization, allowing the use of a single legend, the 

values for 𝑅𝑎 < 1425 were multiplied by a scale, as indicated in the figure for each case.  

 

Figure 4 – Influence of interface deformation on velocity and temperature fields for 𝑅𝑎𝜌 = 103. 

For 𝑅𝑎𝜌 = 103  the critical Rayleigh number is approximately 1163, therefore the results 

shown in Figure 4–a are very close to the critical value. In this case, the interface deformation can be 

neglected and the velocity and temperature profiles obtained are similar to those obtained at higher 

𝑅𝑎𝜌 values. For 𝑅𝑎 = 1234 (Figure 4-b), a small interface deformation can be observed, however the 

condition 𝜂 ≪ 𝑑1 still holds and the velocity and temperature profiles are very similar to 𝑅𝑎 = 1163. 

 In spite of the interface deformation be negligible for 𝑅𝑎  near the critical value, as the 

Rayleigh number increases it becomes more evident, as can be seen in the Figure 4. For 𝑅𝑎 = 1371 

(Figure 4-c) the velocity is significantly altered and the convective cells are distorted. The interface 

has a wavy shape, with the points of maximum (crest) appearing in the region where the fluid ascends 

and the vertical velocity in the bottom layer is positive near the interface and the points of minimum 

appearing the descending region. For 𝑅𝑎 = 1425 the deformations further increase and the deviation 

from the linearized model are more significant.  
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4. CONCLUSION 

In the present study a comparison between linear stability analysis using normal modes and 

direct numerical simulation with CFD techniques of double-layer Rayleigh-Bénard convection was 

presented. LSA techniques allow determining the critical value where the convection starts, however 

the linearization process neglects high order terms and this can lead to deviations from the actual 

system behavior. The CFD simulations, on the other hand, solve the full non-linear system of 

governing equation, but are much more computationally expensive. The results show that the LSA 

has an excellent performance near the critical point and so can be used to define the critical values. 

However, as the intensity of the convective motion increases the deviations from the linearized model 

increases, and the velocity and temperature profiles given by the LSA are not consistent anymore.  
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