

# EQUILÍBRIO LÍQUIDO – LÍQUIDO EM MISTURAS TERNÁRIAS DE LÍQUIDO IÔNICO PRÓTICO BUTIRATO DE 2-HIDROXIETILAMÔNIO + ÁLCOOL (METANOL OU ETANOL) + ACETATO DE PROPILA

R. R. PINTO<sup>1</sup>, S. MATTEDI<sup>2</sup>, M. AZNAR<sup>1</sup>

<sup>1</sup>Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Química. <sup>2</sup>Universidade Federal da Bahia (UFBA), Faculdade de Engenharia Química. E-mail´s para contato: <u>rafarocha2000@gmail.com</u> ou <u>maznar@feq.unicamp.br</u>

RESUMO – Dados de sistemas de equilíbrios líquido-líquido ternários envolvendo líquido iônico prótico Butirato de 2-hidroxietilamônio (2-HEAB) + álcool (metanol ou etanol) + acetato de propila a 25°C e pressão atmosférica foram determinados através de duas propriedades, densidade e índice de refração. Os resultados de Equilíbrio Líquido-Líquido mostraram uma pequena região de extração, na parte inferior do diagrama, sendo que o líquido iônico apresentou melhores resultados de extração do metanol do que etanol, com valores percentuais de até 96%. A qualidade da técnica experimental foi analisada através do cálculo da distância entre os pontos de mistura e sua respectiva linha de amarração.

# 1. INTRODUÇÃO

Líquidos iônicos pertencem a uma classe de sais orgânicos que, de acordo com uma definição arbitrária, mas amplamente aceita, normalmente são líquidos a temperaturas abaixo de 100°C. São chamados também de solventes projetáveis, devido à enorme gama de possíveis combinações entre cátions orgânicos e ânions orgânicos ou inorgânicos. Nas últimas décadas esta nova classe de materiais vem atraindo a atenção de pesquisadores que estudam substitutos aos solventes tradicionais, para seu uso devido às suas potenciais aplicações e sua baixa pressão de vapor, segundo Álvarez *et al.*(2010) e Iglesias *et al.* (2010), o que minimiza emissões tóxicas ao meio ambiente.

Líquidos iônicos compostos pelo cátion imidazólio são os mais comumente estudados, porém, os líquidos iônicos próticos com base em alquilamônios começaram a se mostrar também atrativos. Líquidos iônicos próticos são formados pela transferência de próton entre uma mistura equimolar de um ácido de Brönsted e de uma base de Brönsted. A principal diferença entre líquidos iônicos próticos e outros líquidos iônicos é a presença de um próton permutável, podendo este produzir ligações de hidrogênio entre o ácido e a base. Autores como Bicak (2004), Cota *et al.* (2007), Álvarez *et al.*(2010) e Iglesias *et al.*(2010) comentam sua síntese simples e sua relevância em importantes processos.

Alguns exemplos do uso dos líquidos iônicos como nova classe de "solventes verdes", segundo Wasserscheid e Keim, (2000) são: operações de separação, onde a purificação de correntes de extrato para regeneração de solvente se dá muitas vezes por destilação devido ao uso de solventes voláteis. Este método só é adequado para a limpeza/regeneração de líquidos iônicos pela evaporação do soluto, uma vez que os líquidos iônicos possuem caráter não volátil à pressão



atmosférica; e processos onde sistemas aquosos não são possíveis ou mostram sérias desvantagens, pode-se aplicar um líquido iônico como meio polar alternativo a água.

Verificando a importância dos estudos envolvendo esta classe de materiais e devido a escassez de dados de Equilíbrio Líquido - Líquido envolvendo líquidos iônicos próticos, foram estudados os sistemas Butirato de 2-hidroxietilamônio (2-HEAB) + metanol + acetato de propila e Butirato de 2-hidroxietilamônio (2-HEAB) + etanol + acetato de propila a 25°C e pressão atmosférica, mapeando suas regiões bifásicas, limitadas por suas *tie lines*, a fim de verificar o uso deste líquido iônico no processo de separação de álcool em éster.

# 2. MATERIAIS E MÉTODOS

Propriedades, a 25°C, dos compostos utilizados neste trabalho são apresentadas na Tabela 1. O líquido iônico prótico, Butirato de 2-hidroxietilamônio (2-HEAB) é formado pela base etanolamina e pelo ácido butírico e foi sintetizado em nosso laboratório, de acordo com metodologia segundo Bicak (2004), Cota *et al.* (2007) e Alvarez *et al.* (2010). Após 2 meses do líquido iônico sintetizado foi verificado teor de água próximo a 7%. Para analisar a quantidade de água foi utilizado titulador Karl Fischer volumétrico da Mettler Toledo, modelo DL 31. A fim de diminuir esta quantidade de água o líquido iônico foi purificado a vácuo por 6 horas. Esta operação garantiu teor de água inferior a 1%.

|                    |                        | Densidade |                       | Índi<br>refr | ce de<br>ação       |        |               |
|--------------------|------------------------|-----------|-----------------------|--------------|---------------------|--------|---------------|
| Componente         | massa molar<br>(g/mol) | Exp       | lit                   | exp          | lit                 | Pureza | Fornecedor    |
| Etanolamina        | 61.08                  | 1.012301  | 1.012700 <sup>a</sup> | 1.4524       | 1.4525 <sup>a</sup> | 99%    | Sigma-Aldrich |
| Ácido Butírico     | 88.11                  | 0.951644  | $0.952810^{b}$        | 1.3962       | 1.3961 <sup>b</sup> | 99%    | Sigma-Aldrich |
| 2-HEAB             | 149.20                 | 1.072588  | 1.072580 <sup>c</sup> | 1.4661       |                     | 99%    | Sigma-Aldrich |
| Metanol            | 32.04                  | 0.786654  | $0.786710^{d}$        | 1.3266       |                     | 99%    | Sigma-Aldrich |
| Etanol             | 46.07                  | 0.785076  | 0.785261 <sup>d</sup> | 1.3592       |                     | 99%    | Sigma-Aldrich |
| Acetato de Propila | 102.13                 | 0.882474  | 0.882610 <sup>e</sup> | 1.3818       |                     | 99%    | Sigma-Aldrich |

Tabela 1 - Propriedades dos componentes puros a 25°C

<sup>a</sup> Murrleta-Guevara e Rodriguez (1984).

<sup>b</sup> Bahadur*et al.*, (2013).

<sup>c</sup> Pinto *et al.* (2013).

<sup>d</sup> Alvarez *et al* (2011).

<sup>e</sup> Alvarez (2010).

As propriedades utilizadas para determinar dados de equilíbrio de fases foram densidade, utilizando densímetro Anton Paar DMA- 5000 com precisão de  $\pm 5 \times 10^{-6}$ , e índice de refração, utilizando refratômetro digital Mettler Toledo RE 40D com precisão de  $\pm 1 \times 10^{-4}$ . Cada propriedade foi medida a cada ponto de névoa, para determinar as curvas de calibração e também em cada fase de cada *tie line*, ou linha de amarração, após as misturas atingirem equilíbrio. O método de ponto de névoa foi segundo Iglesias *et al.* (2007) e De Oliveira e Aznar (2011), utilizando células de equilíbrio encamisadas contendo mistura binária conhecida e gotejando lentamente o terceiro componente, até se obter névoa no sistema. Conhecendo a região de imiscibilidade foram determinados pontos de mistura, contendo os três componentes, sendo que cada ponto de mistura corresponde a uma *tie line*. Essa mistura conhecida foi pesada diretamente



dentro da célula de equilíbrio, com o auxílio da balança analítica da Shimadzu, modelo AX 200 e precisão de 0.001 g. Em seguida as células, contendo os três componentes, foram submetidas a forte agitação com auxílio de Vórtex Biomixer, modelo QL 901, a fim de quebrar a tensão superficial entre as fases que foram formadas logo após a pesagem. Quebrada a tensão superficial as misturas foram agitadas nas células por aproximadamente 8 horas, por agitadores magnéticos da Fisatom, modelo 752. Ao final das 8 horas de agitação as células permaneceram em repouso por 12 horas, para atingirem o equilíbrio termodinâmico. Ao atingirem o equilíbrio cada célula apresentou duas fases de aspectos translúcidos e límpidos. Foram coletadas amostras de aproximadamente 3 ml de cada fase para análises das propriedades, 2 ml para análise de densidade e 1 ml para análise de índice de refração. Em todas as etapas dos experimentos, tanto para pontos de névoa como para *tie lines*, as células estavam conectadas por banho termostático Tecnal TE-184, a fim de garantir o controle de temperatura, em 25°C.

## **3. RESULTADOS E DISCUSSÕES**

Frações mássicas (*w*), densidades ( $\rho$ ) e índices de refração ( $n_D$ ) dos pontos de névoa determinados para fase rica em líquido iônico e rica em éster, são apresentados na Tabela 2.

Tabela 2 - Fração mássica (w), densidade (ρ), índice de refração (n<sub>D</sub>) para os pontos de névoa para os sistemas 2-HEAB (1) + Metanol (2) + Acetato de Propila (3) e 2-HEAB (1) + Etanol (2) + Acetato de Propila (3) a 25°C.

|                | Μ                     | etanol   |                |                | Etai                  | nol      |                |
|----------------|-----------------------|----------|----------------|----------------|-----------------------|----------|----------------|
| $\mathbf{w}_1$ | <b>W</b> <sub>2</sub> | Р        | n <sub>D</sub> | $\mathbf{w}_1$ | <b>W</b> <sub>2</sub> | ρ        | n <sub>D</sub> |
| 0.8837         | 0.0000                | 1.057106 | 1.4563         | 0.8837         | 0.0000                | 1.057106 | 1.4563         |
| 0.7432         | 0.0956                | 1.014209 | 1.4358         | 0.8119         | 0.0538                | 1.031486 | 1.4463         |
| 0.6712         | 0.1281                | 0.996129 | 1.4278         | 0.6926         | 0.1170                | 0.997269 | 1.4331         |
| 0.6055         | 0.1500                | 0.980782 | 1.4206         | 0.6530         | 0.1326                | 0.987315 | 1.4293         |
| 0.5381         | 0.1679                | 0.965893 | 1.4141         | 0.5703         | 0.1538                | 0.968386 | 1.4216         |
| 0.3600         | 0.1751                | 0.931024 | 1.3994         | 0.5076         | 0.1674                | 0.954949 | 1.4156         |
| 0.2451         | 0.1550                | 0.911205 | 1.3943         | 0.4138         | 0.1725                | 0.936024 | 1.4083         |
| 0.0809         | 0.1030                | 0.886276 | 1.3911         | 0.3138         | 0.1708                | 0.918891 | 1.4006         |
| 0.0204         | 0.0602                | 0.879883 | 1.3830         | 0.2434         | 0.1581                | 0.906831 | 1.3966         |
| 0.0089         | 0.0000                | 0.882832 | 1.3819         | 0.1877         | 0.1495                | 0.897998 | 1.3924         |
|                |                       |          |                | 0.0785         | 0.1191                | 0.881993 | 1.3861         |
|                |                       |          |                | 0.0296         | 0.0789                | 0.877326 | 1.3829         |
|                |                       |          |                | 0.0089         | 0.0000                | 0.882832 | 1.3819         |

As curvas de calibração obtidas a partir dos dados da Tabela 2 são apresentados nas Equações 1 e 2 para o sistema: 2-HEAB (1) + Metanol (2) + Acetato de Propila (3); e Equações 3 e 4 para o sistema: 2-HEAB (1) + Etanol (2) + Acetato de Propila (3), ambos a 25°C e pressão atmosférica. Os pontos de névoa, que delimitam as regiões homogênea da heterogênea, dos dois sistemas, são apresentados nas Figuras 1 e 2.

 $\rho = 0.881243 + (0.187868.w_1) - (0.092112.w_2) + (0.110743.w_1)^2 - (0.055861.w_1.w_2)$ (1)

 $n_D = 1.381431 - (0.009438.w_1) + (0.071765.w_2) + (0.326660.w_1)^2 - (0.058766.w_1.w_2)$ (2)

 $\rho = 0.880997 + (0.198846.w_1) - (0.117206.w_2) - (0.000697.w_1)^2 - (0.092918.w_1.w_2) \quad (3)$ 



wes

 $n_D = 1.381337 + (0.061670.w_1) - (0.000781.w_2) + (0.161074.w_1)^2 - (0.161074.w_1.w_2)$ (4)

Os dados de ELL para os sistemas ternários contendo 2-HEAB (1) + Metanol (2) + Acetato de Propila (3) e 2-HEAB (1) + Etanol (2) + Acetato de Propila (3) a 25°C e pressão atmosférica, são apresentados na Tabela 3 e 4, respectivamente, juntamente com os coeficientes de distribuição (*K*) e os coeficientes de seletividade do solvente (*S*), determinados através das Equações 5 e 6.

$$K = \frac{w_2^{li}}{w_2^{es}}$$

$$S = \frac{\frac{w_2^{li}}{w_2^{es}}}{w_1^{li}}$$
(5)
(6)

Sendo  $w_2 e w_3$  frações mássicas dos componentes 2 e 3, respectivamente e os sobrescritos *li* e *es* representam fase rica em líquido iônico e fase rica em éster, respectivamente.

Tabela 3 - Dados de ELL para o sistema 2-HEAB (1) + Metanol (2) + Acetato de Propila (3) a 25°C

| Mis            | turas          | Fase rica em Éster |                       |         |                | Fase rica em 2-HEAB |                       |         |                | _      |         |
|----------------|----------------|--------------------|-----------------------|---------|----------------|---------------------|-----------------------|---------|----------------|--------|---------|
| $\mathbf{w}_1$ | $\mathbf{w}_2$ | $\mathbf{w}_1$     | <b>w</b> <sub>2</sub> | Р       | n <sub>D</sub> | $\mathbf{w}_1$      | <b>W</b> <sub>2</sub> | Р       | n <sub>D</sub> | K      | S       |
| 0.4078         | 0.0249         | 0.0038             | 0.0014                | 0.88208 | 1.3813         | 0.8244              | 0.0395                | 1.03901 | 1.4471         | 29.051 | 212.440 |
| 0.4040         | 0.0356         | 0.0001             | 0.0046                | 0.88168 | 1.3811         | 0.8045              | 0.0610                | 1.03196 | 1.4444         | 13.265 | 98.200  |
| 0.3918         | 0.0546         | 0.0059             | 0.0110                | 0.88114 | 1.3807         | 0.7577              | 0.0864                | 1.01902 | 1.4379         | 7.886  | 49.749  |
| 0.3803         | 0.1047         | 0.0164             | 0.0222                | 0.88019 | 1.3800         | 0.6338              | 0.1501                | 0.98611 | 1.4235         | 6.771  | 30.131  |
| 0.3769         | 0.1330         | 0.0153             | 0.0248                | 0.88063 | 1.3798         | 0.5490              | 0.1669                | 0.96759 | 1.4150         | 6.733  | 22.744  |

Tabela 4 - Dados de ELL para o sistema 2-HEAB (1) + Etanol (2) + Acetato de Propila (3) a 25°C

| Mis            | turas                 | Fase rica em Éster |                |         |                | Fase rica em 2-HEAB |                       |         |                |        |        |
|----------------|-----------------------|--------------------|----------------|---------|----------------|---------------------|-----------------------|---------|----------------|--------|--------|
| $\mathbf{w}_1$ | <b>W</b> <sub>2</sub> | $\mathbf{w}_1$     | $\mathbf{W}_2$ | Р       | n <sub>D</sub> | $\mathbf{w}_1$      | <b>W</b> <sub>2</sub> | Р       | n <sub>D</sub> | К      | S      |
| 0.3745         | 0.0289                | 0.0011             | 0.0039         | 0.88075 | 1.3814         | 0.7994              | 0.0458                | 1.03117 | 1.4457         | 11.704 | 75.244 |
| 0.3598         | 0.0452                | 0.0005             | 0.0091         | 0.87983 | 1.3813         | 0.7819              | 0.0656                | 1.02403 | 1.4433         | 7.170  | 46.554 |
| 0.3123         | 0.1052                | 0.0048             | 0.0374         | 0.87756 | 1.3816         | 0.6352              | 0.1470                | 0.98141 | 1.4271         | 3.933  | 17.296 |
| 0.3152         | 0.1282                | 0.0133             | 0.0470         | 0.87808 | 1.3821         | 0.5480              | 0.1669                | 0.96189 | 1.4191         | 3.552  | 11.707 |

Diagramas ternários apresentando curvas binodais e *tie lines* representam os dados experimentais de ELL, mostrados nas Figuras 1 e 2. Pode-se observar que a região de extração é pequena e se encontra na parte inferior do diagrama, tendo os conjuntos de líquido iônico e metanol ou etanol e acetato de propila e metanol ou etanol totalmente solúveis entre si.Interações moleculares, na fase líquida, normalmente dependem de dois efeitos: variação de forças intermoleculares, ao haver contato entre os componentes, e variações no empacotamento molecular por consequencia de diferentes tamanhos e formatos das moléculas dos componentes.





Figura 1 - Diagrama Ternário com Dados Experimentais de Equilíbrio Líquido Líquido para o sistema: 2-HEAB (1) + Metanol (2) + Acetato de Propila (3). (●) pontos de névoa;
(○) pontos centrais de mistura; (▼) frações mássicas dos componentes em equilíbrio.



Figura 2 - Diagrama Ternário com dados Experimentais de Equilíbrio Líquido Líquido para o sistema: 2-HEAB (1) + Metanol (2) + Acetato de Propila (3). (●) pontos de névoa;
 (○) pontos centrais de mistura; (♥) frações mássicas dos componentes em equilíbrio.

Informações como inclinação das *tie lines* e seletividades, *K* e *S* respectivamente, que são apresentados nas Tabelas 3 e 4, e a distribuição do soluto na fase rica em líquido iônico e na fase rica em éster, podem indicar qual foi o soluto que melhor interagiu com o solvente. As maiores inclinações e coeficientes de seletividade podem ser observadas no sistema contendo metanol. Através da Figura 3 é claro perceber que ambos os alcoóis interagiram mais com o líquido iônico



do que com o éster, sendo que dentre os dois alcoóis estudados o metanol se distribuiu mais na fase iônica que o etanol



Figura 3. Distribuição dos álcoois entre as fases ricas em líquido iônico (2-HEAB) e éster (Acetato de Propila): metanol ( $\Delta$ ); etanol ( $\Box$ ).sendo os sitemas: 2-HEAB (1) + Metanol (2) + Acetato de Propila (3) e 2-HEAB (1) + Etanol (2) + Acetato de Propila (3).

A porcentagem de remoção, *E*, do soluto é dada pelas Equações 7 - 9. Os valores de *E*, para cada linha de amarração, são apresentados na Tabela 5 e na Figura 4.

$$E = \frac{c_0 - c_f}{c_0} \cdot 100 \tag{7}$$

$$C_0 = \left(\frac{w_2}{w_2 + w_3}\right)_{misturas} \tag{8}$$

$$C_f = \left(\frac{w_2}{w_2 + w_3}\right)_{es} \tag{9}$$

Sendo  $C_{0}e$   $C_{f}$  as frações mássicas do álcool em éster na etapa de mistura e depois de ter obtido equilíbrio, respectivamente. Para os dois sistemas o percentual de extração foi acima de 74%, atingindo os maiores resultados de extração as misturas contendo metanol.

Tabela 5 -Frações mássicas de álcool em acetato de propila antes  $(C_0)$  e após  $(C_f)$  o equilíbrio e percentuais de extração em cada *tie line*.

| 2-Н      | EAB + Me                          | la             | 2-HEAB + Etanol + Ac. de Propila |        |          |                       |                |       |        |
|----------|-----------------------------------|----------------|----------------------------------|--------|----------|-----------------------|----------------|-------|--------|
| Tie line | w <sub>2</sub> <sup>mistura</sup> | C <sub>0</sub> | Cf                               | Ε      | Tie line | W2 <sup>mistura</sup> | C <sub>0</sub> | Cf    | Ε      |
| 1        | 0.0249                            | 0.042          | 0.001                            | 96.754 | 1        | 0.0289                | 0.046          | 0.004 | 91.513 |
| 2        | 0.0356                            | 0.060          | 0.005                            | 92.294 | 2        | 0.0452                | 0.071          | 0.009 | 87.056 |
| 3        | 0.0546                            | 0.090          | 0.011                            | 87.718 | 3        | 0.1052                | 0.153          | 0.038 | 75.440 |
| 4        | 0.1047                            | 0.169          | 0.023                            | 86.661 | 4        | 0.1282                | 0.187          | 0.048 | 74.563 |
| 5        | 0.1330                            | 0.213          | 0.025                            | 88.209 |          |                       |                |       |        |



Para verificar a qualidade dos dados foi observado se as *tie lines* passaram pelos pontos de mistura ao se aplicar uma equação algébrica que mede a distância entre a linha de amarração e o ponto central de mistura. A distância entre o ponto central e sua respectiva *tie line* é chamado de u, e foi obtido através das Equações 10 - 13. Nos trabalhos de De Oliveira e Aznar (2011) estas Equações também foram utilizadas para avaliar os dados experimentais.

$$a = x_2^{es} - x_2^{li} \tag{10}$$

$$b = x_1^{li} - x_1^{es} \tag{11}$$

$$c = x_1^{es} x_2^{li} - x_1^{li} x_2^{es}$$
(12)

$$u = \frac{|ax_1^{mistura} + bx_2^{mistura} + c|}{\sqrt{a^2 + b^2}}$$
(13)

Os sobrescritos li e *es* representam fase rica em líquido iônico e fase rica em éster, respectivamente e o subscrito 2 é referente ao componente 2 do sistema, o álcool. A Tabela 6 mostra os valores de *u* para cada linha de amarração. A média dos valores de *u* para o sistema contendo metanol foi menor que a média de *u* para o sistema com etanol: 0.006 e 0.011, respectivamente. Os valores de *u* aumentaram na medida em que as linhas de amarração se aproximavam da curva binodal.

| Tabela 6 – Distância do ponto central de | nistura de sua <i>tie li</i> | <i>ine</i> , <i>u</i> ,eparâmetros p | para Equação 10 |
|------------------------------------------|------------------------------|--------------------------------------|-----------------|
|------------------------------------------|------------------------------|--------------------------------------|-----------------|

| 2-H      | 2-HEAB + Etanol + Ac. de Propila |       |        |       |          |        |       |        |       |
|----------|----------------------------------|-------|--------|-------|----------|--------|-------|--------|-------|
| Tie Line | а                                | b     | С      | и     | Tie Line | a      | b     | С      | и     |
| 1        | -0.038                           | 0.821 | -0.001 | 0.005 | 1        | -0.042 | 0.798 | -0.003 | 0.005 |
| 2        | -0.056                           | 0.804 | -0.004 | 0.003 | 2        | -0.056 | 0.781 | -0.007 | 0.010 |
| 3        | -0.075                           | 0.752 | -0.008 | 0.005 | 3        | -0.110 | 0.630 | -0.023 | 0.014 |
| 4        | -0.128                           | 0.617 | -0.012 | 0.007 | 4        | -0.120 | 0.535 | -0.024 | 0.013 |
| 5        | -0.142                           | 0.534 | -0.011 | 0.012 |          |        |       |        |       |

### 4. CONCLUSÕES

Através de medidas de densidade e índice de refração, diagramas de fases, indicando as regiões de miscibilidade e imiscibilidade, bem como as linhas que indicam as composições em cada fase em equilíbrio, foram determinados para os sitemas 2-HEAB + Metanol + Acetato de Propila e 2-HEAB + Etanol + Acetato de Propila a  $25^{\circ}$ C e pressão ambiente. A consistência dos dados foi verificada através da análise da distância entre a linha de amarração e seu ponto de mistura, onde os valores de *u* foram baixos. As linhas de amarração mostraram que metanol e etanol são mais solúveis na fase solvente, líquido iônico, do que na fase rafinado, acetato de propila. Os dados experimentais de distribuição do soluto e coeficiente de seletividade mostraram maior interação entre metanol e 2-HEAB, porém o líquido iônico mostrou ser um meio eficaz no processo de extração dos dois álcoois, pois resultados entre 74 e 91% de extração foram observados para sistema contendo etanol e 88 a 96% de extração foram encontrados para sitemas contendo metanol.



### 5. AGRADECIMENTOS

Os autores agradecem a Fundação de Amparo a Pesquisa do Estado de São Paulo - FAPESP (processo 2011-19736/1) e o Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq.

## 6. REFERÊNCIAS

ALVAREZ, V. H.; MATTEDI, S.; MARTIN-PASTOR, M.; AZNAR, M.; IGLESIAS, M. Synthesis and thermophysical properties of two new protic long-chain ionic liquids with the oleate anion, *Fluid Phase Equilibria*. 299 (2010) 42-50.

ALVAREZ, V. H.; MATTEDI, S.; MARTIN-PASTOR, M.; AZNAR, M.; IGLESIAS, M. Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxyethylammonium acetate + (water, methanol, or ethanol)}.*J. Chem. Thermodynamics*, 43 (2011) 997-1010.

BAHADUR.I., DEENADAYALU, N., NAIDOO, P., RAMJUGERNATH, D., Density, speed of sound, and refractive measurements for the binary systems (butanoic acid + propanoic acid, or 2-methyl-propanoic acid) at T=(293.15 to 313.15) K. J. Chem. Thermodynamics, 57 (2013) 203 – 211.

BICAK, N.A new ionic liquid: 2-hydroxy ethylammoniumformate.J. Mol.Liq, 116 (2004) 37-44.

COTA, I.; GONZALES-OLMOS, R.; IGLESIAS, M.; MEDINA, F. New Short Aliphatic Chain Ionic Liquids: Synthesis, Physical Properties, and Catalytic Activity in AldolCondensations. *J. Phys. Chem. B* 111 (2007) 12468-12477.

DE OLIVEIRA, L. H., AZNAR, M. Liquid – Liquid Equilibria {1-Ethyl-3-methylimidazolium Diethylphosphate or 1-Ethyl-3-methylimidazolium Ethylsulfate} + 4,6-Dimethyldibenzothiophene + Dodecane Systems at 298.2 K and 313.2 K.J. Chem. Eng. Data, 56 (2011) 2005-2012.

IGLESIAS, M., GONZALES-OLMOS, R., SALVATIERRA, D., RESA, J.M., Analysis of methanol extraction from aqueous solution by n-hexane: Equilibruim diagrams as a function of temperature. *Journal of Molecular Liquids*, 130 (2007) 52 – 58.

IGLESIAS, M.; GONZALES-OLMOS, R.; COTA, I.; MEDINA, F. Brønsted ionic liquids: Study of physico-chemical properties and catalytic activity in aldol condensations. *Chemical Engineering Journal*. 162 (2010), 802-808.

MURRLETA-GUEVARA, F.; RODRIGUEZ, A. T. Liquid Density as a Function of Temperature of Five Organic Solvents. *J. Chem. Eng. Data*, 29 (1984), 204–206.

PINTO, R, R,. AZNAR, M., MATTEDI, S., IGLESIAS, M. Propriedades Volumétricas de misturas binárias de três líquidos iônicos próticos + água a 25 E 50°C. VII Congresso Brasileiro de Termodinâmica Aplicada, nov. 2013.

WASSERSCHEID, P.; KEIM, W. Ionic liquids - new "solutions" for transition metal catalysis. *Angewandte Chemie International Edition*. 39, p. 3772-3789. 2000.