

DETERMINAÇÃO DE DADOS EXPERIMENTAIS DE EQUILÍBRIO DE FASES À ALTA PRESSÃO DO SISTEMA DIÓXIDO DE CARBONO SUPERCRÍTICO + ETANOL + L-LACTÍDEO

E. A. REBELATTO¹, J. P. BENDER², J. V. OLIVEIRA¹, M. LANZA¹

¹ Universidade Federal de Santa Catarina, Departamento de Engenharia Química e Engenharia de Alimentos

² Universidade Federal da Fronteira Sul, Campus Erechim E-mail para contato: etorebelatto@gmail.com

RESUMO – A maioria dos processos tradicionais de polimerização é mediada por catalisadores tóxicos que podem deixar resíduos nos produtos, por outro lado, os processos enzimáticos que utilizam catalisadores biológicos podem ser considerados limpos. Em especial, o poli-(L-lactídeo), que pode ser obtido através da abertura do anel do monômero L-lactídeo, é classificado como um polímero biodegradável, biocompatível e bioreabsorvível, assim pode ser empregado na área médica, farmacêutica e alimentícia. O objetivo deste trabalho foi realizar o estudo do comportamento de fases em alta pressão do sistema ternário L-lactídeo + etanol + dióxido de carbono supercrítico visando à obtenção de dados para a condução do processo de polimerização em meio supercrítico. Os experimentos foram realizados utilizando uma célula de volume variável numa faixa de temperatura de 50 a 70 °C, pressão entre 90 e 255 bar e razão molar etanol/L-lactídeo de 1:1. Transições de fases do tipo líquido-vapor, líquido-líquido e líquido-líquido-vapor foram observadas. Por meio de diagramas P-x e/ou P-T, observou-se o comportamento LCST. Os dados reportados neste trabalho fornecem informações importantes para o desenvolvimento e condução da síntese de polímeros em meio supercrítico.

1. INTRODUÇÃO

O desenvolvimento de macromoléculas com propriedades e estruturas definidas com o objetivo de aplicações biomédicas tem resultado em diversos polímeros biodegradáveis com arquiteturas avançadas. Entre eles, poliésteres alifáticos e policarbonetos sintetizados pela polimerização de abertura de anel (ROP) de lactonas e lactídeos, que têm uma posição de destaque devido às propriedades mecânicas, hidroestabilidade e biocompatibilidade (Garlotta, 2001).

Dentre esses poliésteres, o poli-(lactídeo) é pioneiro no mercado de bioplásticos possuindo melhores estruturas de custo e disponibilidade. Ele é um material termoplástico com rigidez e transparência semelhante ao poliestireno (PS) ou politereftalato de etileno (PET) (Garlotta, 2001).

O L-lactídeo é um importante produto intermediário da síntese do ácido poli-láctico com alta massa molar, podendo ser usado na produção de materiais biodegradáveis. Existem 4 tipos de lactídeo, sendo L-lactídeo, D-lactídeo, meso-lactídeo e D,L lactídeo. O L-lactídeo é o mais frequentemente empregado na indústria por ser encontrado no corpo humano (Chen et al., 2013).

Nas últimas décadas, a polimerização por via enzimática emergiu como um novo e importante método de síntese de polímeros. Os métodos catalíticos tradicionais contêm metais tóxicos que podem causar danos ambientais, sendo assim, a catálise enzimática é vista como uma alternativa que não agride o meio ambiente. Essa nova abordagem exibe consideráveis benefícios sobre os métodos análogos químicos, principalmente porque a polimerização por catálise pode operar em condições muito mais suaves do que catálises metálicas sendo consideradas alternativas biocompatíveis (Trurecht et al., 2006).

 $O CO_2$ supercrítico é usado frequentemente nessas aplicações por ser um solvente versátil e ainda um interessante substituto aos solventes orgânicos tóxicos e aos clorofluorcarbonetos. Ele não é tóxico, não é inflamável, é quimicamente inerte e barato (Nalawade; Picchioni; Janssen, 2006).

Existem trabalhos na literatura que mostram o comportamento de fases entre o CO_2 e o Llactídeo em altas pressões (Gregorowicz, 2008). De acordo com esse trabalho foi possível observar que pressões muito elevadas foram necessárias para a completa obtenção de uma fase homogênea. Nesse contexto, a utilização de um cossolvente foi proposta neste trabalho para o auxílio na solubilização e possível redução das pressões necessárias para homogeneização do sistema. Diante do exposto, o objetivo deste estudo foi acrescentar etanol ao sistema llactídeo/ CO_2 , buscando o aumento da solubilidade do monômero no solvente supercrítico visando encontrar pressões de transição de fases inferiores àquelas reportadas na literatura.

2. MATERIAIS E MÉTODOS

2.1 Materiais

L-lactídeo foi adquirido junto a Sigma-Aldrich (pureza mínima de 98%), o composto não sofreu nenhum pré-tratamento antes dos experimentos, sendo logo armazenado em refrigerador, sob atmosfera inerte, para que não sofresse qualquer tipo de alteração por ação da luz ou calor. O dióxido de carbono (99,9% de pureza mínima, em massa, fase líquida) foi adquirido na White Martins S/A em cilindro de 25 kg. O etanol absoluto (99,9%, em massa, de pureza mínima) para análise utilizado foi adquirido da Merck.

2.2 Aparato de equilíbrio de fases e procedimento

As medidas experimentais de equilíbrio de fases a altas pressões foram conduzidas em uma célula de volume variável com visualização, baseada no método estático sintético, sendo que a unidade utilizada é similar àquelas apresentadas por Lanza (2004), Bender et al. (2010), Debien et al. (2013). Brevemente, o aparato consiste de uma célula de volume variável, com volume máximo interno de 0,027 dm³, com duas janelas de safira para a observação visual, um transdutor de pressão (Smar LD 301), com uma precisão de ± 0.03 MPa, um programador portátil (Smar, HT 201) e uma bomba seringa (ISCO 260D). A célula possui um pistão móvel que possibilita controlar a pressão no interior da célula. As transições de fase foram medidas visualmente usando a bomba seringa e o solvente como fluido pneumático. Inicialmente, amostras do soluto (llactídeo) e cossolvente (etanol) foram medidas em uma balança de precisão (Shimadzu AY220 com precisão de 0,0001 g) e colocadas dentro da célula de equilíbrio que foi fechada em seguida. Uma quantidade conhecida de CO_2 foi adicionada com o auxílio da bomba seringa (com precisão \pm 0,005 g nas cargas de CO₂). Baseado no erro na carga de CO₂ e dos outros compostos estimamos um erro global de composição da mistura menor que 0,8 % em base molar. Então, o sistema foi mantido em constante agitação com a ajuda de um agitador magnético e uma barra de agitação revestida de Teflon. A célula é revestida por uma camisa metálica na qual circula água de um banho termostático, utilizada como fluido de aquecimento/resfriamento e que é responsável por manter o sistema na temperatura desejada. A temperatura da mistura dentro da célula foi monitorada com um termopar do tipo J (com 0,5 °C de precisão). A pressão do sistema foi aumentada até o ponto onde foi possível observar a completa solubilização, caracterizada pela presenca de uma única fase. Neste ponto, o sistema foi mantido, pelo menos, 20 minutos para permitir a estabilização, e, em seguida, a pressão foi reduzida lentamente (tipicamente a uma taxa de 3 bar·min⁻¹) até o surgimento de uma nova fase. Este processo foi repetido pelo menos três vezes a cada temperatura. Uma transição é denominada ponto de bolha (ELV-PB) quando pequenas bolhas aparecem no topo da célula. Nos casos em que ocorria equilíbrio líquido-líquido (ELL) identificava-se o ponto de transição a partir do surgimento de uma nova fase, que se estendia por todo o topo da célula, seguido do turvamento completo do sistema. A despressurização seguia até o surgimento de uma terceira fase vapor no topo da célula caracterizando o equilíbrio líquido-líquido-vapor (ELLV).

3. RESULTADOS E DISCUSSÕES

Os resultados experimentais do equilíbrio de fases para o sistema investigado são apresentados na Tabela 1. Os resultados apresentados nessa tabela reportam o tipo de transição de fases (ELV-(PB), ELL, ELLV), as temperaturas em °C, as frações molares de dióxido de carbono (x'_1) , em base livre de etanol, e a pressão em bar

Tabela 1 - Dados experimentais de equilíbrio líquido-vapor para o sistema dióxido de carbono (1) + etanol (2) + L-lactídeo (3), em base livre de etanol, na razão molar etanol/L-lactídeo de 1:1, equivalente a razão mássica etanol/L-lactídeo de 0,32:1. (continua)

Т	Р	σ	Tipo de	Т	Р	σ	Tipo de
(°C)	(bar)	(bar)	Transição	(°C)	(bar)	(bar)	Transição
$x'_{1} = 0,7494$				$x_{'1}' = 0,9000$			
50	98,4	0,08	ELV-PB	50	176,5	0,16	ELL
60	119,2	0,08	ELV-PB	50	125,4	0,25	ELLV
70	137,6	0,12	ELV-PB	60	199,5	0,28	ELL
$x'_{1} = 0,8000$			60	147,4	0,29	ELLV	
50	117,1	0,14	ELV-PB	70	218,0	0,40	ELL
60	142,9	0,16	ELV-PB	70	167,0	0,38	ELLV
70	166,3	0,14	ELV-PB		$x'_{1} =$	= 0,9250	
$x'_{1} = 0,8127$				50	183,5	0,16	ELL
50	122,5	0,08	ELV-PB	50	124,5	0,53	ELLV
60	147,2	0,14	ELV-PB	60	205,0	0,70	ELL
70	173,1	0,23	ELV-PB	60	145,4	0,14	ELLV
	$x'_{1} = 0$),8250		70	226,5	0,24	ELL
50	134,5	0,08	ELL	70	165,8	0,29	ELLV
50	122,0	0,08	ELLV	$x'_{1} = 0,9503$			
60	158,5	0,12	ELL	50	188,3	0,36	ELL
60	143,9	0,45	ELLV	50	127,6	0,44	ELLV
70	180,7	0,23	ELL	60	216,3	0,47	ELL
70	159,7	0,53	ELLV	60	148,7	0,50	ELLV
$x'_{1} = 0,8500$				70	237,0	0,81	ELL
50	152,5	0,14	ELL	70	169,6	0,49	ELLV
50	123,9	0,32	ELLV	$x'_{1} = 0,9800$			
60	182,5	0,33	ELL	50	172,8	0,59	ELL
60	144,5	0,40	ELLV	50	124,8	0,33	ELLV
70	205,7	0,28	ELL	60	195,7	0,52	ELL
70	163,7	0,40	ELLV	60	147,1	0,38	ELLV
$x'_{'1} = 0,8750$				70	214,8	0,57	ELL
50	152,5	0,16	ELL	70	170,1	0,54	ELLV
50	126,0	0,41	ELLV	$x'_{1} = 0,9900$			
60	182,5	0,09	ELL	50	152,5	0,71	ELL
60	147,0	0,45	ELLV	50	126,8	0,12	ELLV
70	205,7	0,42	ELL	60	172,5	0,85	ELL
70	167,0	0,42	ELLV	60	148,3	0,54	ELLV
				70 70	194,2	0,79	ELL
				/0	172,0	0,81	ELLV

Na Tabela 1 pode ser observado em todas as temperaturas o aparecimento de três tipos de equilíbrios (ELV-PB, ELL e ELLV) com transições do tipo ponto de bolha (PB) que caracterizase pela formação de bolhas no topo da célula durante a despressurização do sistema. Nos casos em que ocorria equilíbrio líquido-líquido (ELL) identificou-se o ponto de transição a partir do surgimento de uma nova fase, que se estendia por todo o topo da célula, seguido do turvamento completo do sistema. A despressurização seguia até o surgimento de uma terceira fase vapor no topo da célula caracterizando o equilíbrio líquido-líquido-líquido-líquido-vapor (ELLV).

Na Figura 1 é apresentado o diagrama de fases pressão *versus* fração molar de dióxido de carbono (x'_1), para a razão molar etanol/L-lactídeo 1:1, em base livre de etanol, nas isotermas de 50, 60 e 70 °C. A faixa de composição molar de dióxido de carbono estudada variou de 0,7494 até 0,990. Nas isotermas investigadas pode ser observado que com o aumento da temperatura ocorreu o aumento das pressões de transição de fases. Em todas as isotermas estudadas nesse diagrama houve o surgimento do envelope líquido-líquido que se estendeu das concentrações de 0,825 até 0,990 de dióxido de carbono. Também foram reportados dados do tipo ponto de bolha (ELV-PB) em concentrações molares inferiores a 0,825.

Figura 1 - Diagrama P-x para o sistema ternário dióxido de carbono (1) + etanol (2) + L- lactídeo (3), em base livre de etanol, razão molar etanol/L-lactídeo de 1:1.

A Figura 2 mostra o diagrama pressão *versus* temperatura para dióxido de carbono + etanol + L-lactídeo nas frações molares de dióxido de carbono de 0,7494 até 0,980 e na razão molar etanol/L-lactídeo de 1:1, em base livre de etanol, nas isotermas de 50, 60 e 70 °C. Como é demonstrado na figura, o ponto crítico da mistura encontra-se próximo da composição de 0,9503 de CO_2 . Pode se perceber claramente que em concentrações menores e maiores de CO_2 , as pressões de transição são menores em relação ao ponto crítico.

Figura 2 - Diagrama P-T para o sistema ternário dióxido de carbono (1) + etanol (2) + L-lactídeo (3), em base livre de etanol, razão molar etanol/monômero de 1:1.

Na Figura 3 são apresentados dados obtidos neste trabalho para a isoterma de 60 °C para o sistema ternário dióxido de carbono + L-lactídeo + etanol na razão molar etanol/L-lactídeo de 1:1. Estes dados são comparados com dados obtidos da literatura para o sistema binário dióxido de carbono + L-lactídeo na temperatura de (60 ± 2) °C. Foi observado menores pressões necessárias para a solubilização do sistema com a adição de etanol, comprovando que a escolha do etanol foi adequada.

Figura 3 - Diagramas P-x para comparação entre os dados experimentais obtidos neste trabalho para o sistema ternário dióxido de carbono (1) + etanol (2) + L- lactídeo (3), em base livre de etanol, na temperatura de 60 °C, na razão molar etanol/monômero de 1:1 e dados experimentais da literatura determinados para o sistema binário dióxido de carbono + L-lactídeo obtidos por Gregorowicz (2008).

No sistema estudado foi detectado o comportamento LCST, que é caracterizado pelo aumento da pressão de transição de fase com o aumento da temperatura. Esse tipo de comportamento pode ser explicado pelo efeito que ocorre no dióxido de carbono com o aumento da temperatura. O gás tende a expandir e dissolver o solvente orgânico (etanol), reduzindo assim a sua capacidade de solubilizar o sistema. Como consequência, maiores pressões são necessárias para atingir a região de uma única fase.

Presumindo que os dados obtidos nesse trabalho serão utilizados para reações de polimerização, é importante salientar que a presença de etanol mostrou-se favorável na redução da pressão necessária para se atingir uma região de única fase, onde ocorrerão as reações de polimerização. Além disso, o solvente orgânico pode atuar como propagador da reação, e ainda facilitar a separação dos produtos reacionais. O etanol poderá também ser utilizado como um coiniciador da reação, podendo contribuir na separação do produto formado, uma vez que o polímero que será produzido não possui solubilidade no etanol.

4. CONCLUSÃO

O etanol utilizado como cossolvente mostrou-se eficiente na solubilização do sistema, já que a sua adição ao sistema dióxido de carbono + L-lactídeo possibilitou a solubilização desse sistema em pressões menores do que aquelas reportadas na literatura sem a presença de um solvente orgânico. O sistema demonstrou o tipo de comportamento LCST, caracterizado pelo aumento da pressão de transição de fases com o aumento da temperatura. Tais transições podem ser explicadas em termos da diferença do coeficiente de expansão entre o monômero e o solvente, neste caso entre o dióxido de carbono e o L-lactídeo.

Os dados reportados neste trabalho fornecem informações importantes para o desenvolvimento e otimização da síntese de polímeros em meio supercrítico, já que é através do entendimento dos fenômenos que ocorrem em altas pressões que teremos as informações necessárias para compreender os sistemas responsáveis pelas reações da polimerização.

5. REFERÊNCIAS BIBLIOGRÁFICAS

- CHEN, Z. et al. Determination and Correlation of Solubility Data and Dissolution Thermodynamic Data of L-Lactide in Different Pure Solvents. Journal of Chemical & Engineering Data, Vol. 58, p. 143-150, 2013.
- BENDER, J. P., FEITEIN M., FRANCESCHI, E., CORAZZA M. L., OLIVEIRA, J. V. Phase behaviour of the ternary system {poly(e-caprolactone) + carbon dioxide + dichloromethane} J. Chem. Thermodynamics, v. 42 p. 229–233, 2010.
- DEBIEN I. C. N., RIGO, A. A., MAZUTTI, M. A., OLIVEIRA, J. V., MEIRELES, M. A. A. High-pressure phase equilibrium data for the l-lactic acid + (propane + ethanol) and the l-lactic acid + (carbon dioxide + ethanol) systems. J. of Supercritical Fluids, v. 79, p. 27-31, 2013.

- GARLOTTA, D. A Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment, v. 9, n. 2, p. 63-84, 2001.
- GREGOROWICZ, J. Phase behaviour of L-lactide in supercritical carbon dioxide at high pressures. J. of Supercritical Fluids, v. 46, p. 105–111, 2008.
- LANZA, M. Comportamento de fases dos óleos de oliva, soja e mamona em n-butano e propano e alta pressão. *Dissertação de Mestrado*. Erechim, RS, Brasil : Universidade Regional Integrada do Alto Uruguai e das Missões, 2004.
- NALAWADE, S. P.; PICCHIONI, F.; JANSSEN, L.P.B.M. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Prog. Polym. Sci., v. 31, p. 19–43, 2006.
- TRURECHT, K. J. et al. Kinetics of enzymatic ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules, v. 39, n. 23, p. 7967 7972, 2006.