

PROPRIEDADES LUBRIFICANTES DE GRAXA DE EXTREMA PRESSÃO (EP) DESENVOLVIDA A PARTIR DO RESÍDUO DO PROCESSAMENTO DE ÓLEO DE ARROZ (Oryza sativa L.)

S. A. ANTUNES¹, H. HENSE¹

¹Universidade Federal de Santa Catarina, Departamento de Engenharia Química e Engenharia de Alimentos

E-mail para contato: h_hense@enq.ufsc.br

RESUMO – O resíduo da destilação da borra de neutralização (RDBN) é um subproduto proveniente do processamento do óleo de arroz e possui alto teor de lipídios, podendo ser utilizado como matéria-prima em produtos que necessitam de fontes oleosas. Sendo assim, o objetivo deste trabalho foi o desenvolvimento de uma graxa biolubrificante com propriedades EP (extrema pressão) a partir do RDBN, utilizando como espessante argila organofílica (bentonita). Foram realizadas nas graxas lubrificantes análises térmicas e ensaios físico-químicos e mecânicos. Os resultados das graxas desenvolvidas com RDBN foram comparados ao de graxas desenvolvidas com óleo mineral. Concluiu-se através dos resultados que algumas das formulações de graxas elaboradas com o RDBN estão dentro dos padrões previstos na literatura para a classificação de graxa lubrificante EP.

1. INTRODUÇÃO

O refino químico do óleo de arroz produz como subproduto a borra de neutralização do óleo de arroz (BNOA). Esta borra possui uma quantidade significativa de óleo, pois, durante o processo de desacidificação uma parte do óleo fica retida no sabão (NARAYAN; BARHATE; RAGHAVARAO, 2006). A destilação da BNOA para obtenção dos ácidos graxos gera o resíduo da destilação da borra de neutralização (RDBN). O RDBN é um subproduto e pode ser utilizado como matéria-prima em outros processos devido sua composição basicamente lipídica, além disso, o RDBN possui uma quantidade significativa de γ-orizanol, um poderoso antioxidante fenólico, boa estabilidade reológica e composição de ácidos graxos e características físico-químicas semelhante ao óleo refinado de arroz (JESUS, 2010; ANTUNES; HENSE; LANZA, 2013).

Graxas lubrificantes são compostas majoritariamente de óleo base (mineral, sintético ou vegetal), agente espessante (tipicamente de 5 a 20%) e aditivos. O óleo confere à graxa características lubrificantes e o espessante determina as características físicas como, a capacidade de suportar altas temperaturas, umidade, ácidos e outros tipos de contaminantes (AGUILLON, 1993).

Devido a sua capacidade de absorção e gelificação, argilas orgânicas, como a bentonita, tem encontrado uma vasta aplicação na indústria, como formadoras estruturais e agente espessante, em tintas, cosméticos, fluidos de perfuração e graxas lubrificantes. (MURRAY, 2000; AVCI, 2003; NÚÑEZ et al., 2012). O uso de argilas orgânicas como agente espessante em graxas lubrificantes confere à graxa excelente estabilidade térmica e alto desempenho. (MAGAURAN, 1987; DENNIS, 1998; NÚÑEZ et al., 2012).

Atualmente, um dos principais problemas de diferentes setores industriais trata-se do impacto que os processos tecnológicos e produtos exercem sobre o meio ambiente. Além disso, há em geral uma tendência em promover a substituição de matérias primas não renováveis por recursos renováveis e a minimização do impacto ambiental causado por resíduos industriais. Consequentemente, um novo mercado com base em produtos ambientalmente corretos está se desenvolvendo rápido e os consumidores estão dispostos a testar novos produtos e até mesmo pagar preços mais altos em produtos que reduzem os impactos negativos ao meio ambiente (NÚÑEZ *et al.*, 2012).

Sendo assim, o objetivo principal deste trabalho foi o desenvolvimento de uma graxa lubrificante com propriedades de extrema pressão, ambientalmente correta, utilizando como óleo base o resíduo do processamento de óleo de arroz (O*ryza sativa* L.) e espessante bentonita.

2. MATERIAIS E MÉTODOS

2.1. Matérias-primas

O resíduo da destilação da borra de neutralização (RDBN) foi gentilmente cedido pela empresa IRGOVEL Ltda. (Pelotas/RS, Brasil). O óleo mineral para confecção da amostra padrão (Vetec Química Fina LTDA, Brasil), assim como os aditivos: BHT (Sterlitamak Petrochemical Plant, Russia) Carbonato de Cálcio P.A. ACS (Vetec Química Fina LTDA, Brasil) e Neodecanoato de Bismuto (Sigma-Aldrich, Co., USA), foram adquiridos em empresas especializadas em venda de reagentes químicos. O espessante (argila bentonita sódica - Organoclay ARS 80) foi adquirida na empresa Flow Chemical & Cabox.

2.2. Preparo das Graxas Lubrificantes

As graxas lubrificantes foram preparadas em duas etapas distintas: (1) homogeneização da argila no óleo base e (2) mistura dos aditivos. Na primeira etapa seguiu-se a metodologia de Chtourou, Frikha e Trabelsi (2006). A segunda etapa de preparação foi realizada segundo a metodologia descrita por Stuart e Wallace (2002).

As formulações estão descritas na Tabela 1, juntamente com o respectivo tempo de rotação que a amostra permaneceu no reator. Os códigos foram obtidos com o auxílio do software Statistica 6.0. A amostra controle foi preparada utilizando como óleo base, 67,5% (m/m) de óleo mineral (vaselina líquida), 16,0% (m/m) de espessante bentonita, 10,0% (m/m) de clarificante, 3,0% (m/m) de antioxidante e 3,5% (m/m) de agente EP.

Tabela 1 – Formulações das graxas lubrificantes com os códigos obtidos no planejamento experimental

Código ¹	Óleo base (%)	Bentonita (%)	Clarificante (%)	Antioxidante (%)	Agente EP ² (%)	Tempo de rotação (min.)
RD1	69,5	14,0	10,0	3,0	3,5	15
RD2	65,5	18,0	10,0	3,0	3,5	15
RD3	69,5	14,0	10,0	3,0	3,5	35
RD4	65,5	18,0	10,0	3,0	3,5	35
RD5	71,5	12,0	10,0	3,0	3,5	25
RD6	63,5	20,0	10,0	3,0	3,5	25
RD7	67,5	16,0	10,0	3,0	3,5	5
RD8	67,5	16,0	10,0	3,0	3,5	45
RD9	67,5	16,0	10,0	3,0	3,5	25
RD10	67,5	16,0	10,0	3,0	3,5	25
RD11	67,5	16,0	10,0	3,0	3,5	25

¹RD – código para graxas elaboradas utilizando como óleo base o resíduo da destilação da borra de neutralização; ²EP: extrema pressão.

2.3. Análises Físico-químicas e Testes de Estabilidade Mecânica

As análises físico-químicas e os testes de estabilidade mecânica foram realizados segundo os métodos da ASTM (*American Society for Testing and Materials*): penetração não-trabalhada e trabalhada 60 vezes (ASTM D217 – 10), ponto de gota (ASTM D566 – 02), corrosão ao cobre (ASTM D130 – 10), four-ball (ASTM D2596 – 10). A aparência foi determinada com a análise criada pelo centro de pesquisa ISATEC.

2.4. Análises Térmicas (TGA e DSC)

A determinação das propriedades térmicas foi realizada no equipamento modelo SDT Q600 (TA Instruments, Delaware, Estados Unidos), com uma taxa de aquecimento de 20 °C/min. em atmosfera de nitrogênio (rampa de temperatura 20 até 600 °C). A curva termogravimétrica foi obtida com uma balança termogravimétrica - SDT 2960 da TA Instruments (Delaware, Estados Unidos) com uma taxa de aquecimento de 20 °C/min (rampa de temperatura 20 a 600 °C) em atmosfera de nitrogênio para a análise da temperatura de degradação.

3. RESULTADOS E DISCUSSÃO

3.1. Teste de Estabilidade Mecânica e Lubrificação

Os testes mecânicos e físico-químicos foram realizados para avaliar o desempenho das graxas. Os resultados dos testes estão descritos na Tabela 2.

A análise de penetração é utilizada para medir a consistência utilizando-se um cone, um copo com o material a ser analisado e uma escala em 1/10 mm. A partir dos resultados da análise de penetração trabalhada 60 vezes pode-se obter a consistência da graxa através do número de consistência NLGI (*National Lubricating Grease Institute*). Com exceção das

graxas RD4, RD5 e RD6, a maioria das graxas, inclusive a amostra controle, obteve o número de consistência NLGI 1, estes tipos de graxas são recomendadas para o uso em sistemas manuais ou automáticos, elas tem melhor mobilidade e são a melhor escolha para aplicações em locais mais frios, sistemas de lubrificação automáticos com longos bombeamentos e outras aplicações (CHTOUROU; FRIKHA; TRABELSI, 2006).

A variação de penetração (Δ) é determinada pela diferença entre a medida da penetração trabalhada 60 vezes e a penetração não trabalhada. Em geral, graxas que tem boa estabilidade apresentam a variação de penetração (Δ) próxima de zero. A amostra que melhor apresentou estabilidade mecânica foi a RD4 com Δ = 13, obtendo um índice menor que o da amostra controle que foi de Δ = 41, com exceção da amostra RD6, todas as outras estão dentro do limite de Δ ≤ + 45 da especificação para graxas EP. Esses valores foram melhores que os encontrados por Sánchez *et al.* (2008) em graxas produzidas com óleo de mamona e sabão de lítio e por Delgado *et al.* (2005) para graxas lubrificantes elaboradas com óleo mineral e sabão de lítio.

Segundo as especificações para graxa EP o ponto de gota deve ser no mínimo 185 °C, as amostras que se encaixam nesse padrão foram RD1, RD2, RD4, RD5, RD6 e RD7, algumas obtiveram melhor estabilidade térmica que a amostra controle.

O teste de corrosão ao cobre avalia a possibilidade da graxa corroer partes e ligas de cobre. Segundo os resultados obtidos as graxas estudadas não corroem partes de cobre, pois se aproximam com a tira ASTM número 1, com a coloração laranja escuro (1b).

A análise das quatro esferas, comumente conhecida como teste de *four-ball*, avalia a propriedade da graxa de suportar pressões extremas ao longo do trabalho. Como a quantidade de aditivo para tal finalidade era a mesma para todas as formulações, realizou esta análise em apenas 3 das 12 amostras, e como esperado os valores encontrados de 200 kg foram iguais para as amostras avaliadas. Esses valores foram semelhantes aos encontrados ao Chtourou, Frikha e Trabelsi (2006), para graxas com óleo mineral e argila benonita modificada.

Finalmente, quanto à aparência todas as amostras se mostraram lisas não apresentando imperfeições e rugosidades.

Tabela 2 – Características mecânicas e físico-químicas das graxas lubrificantes elaboradas com o resíduo da destilação da borra de neutralização (RDBN) do processamento de arroz

Análise	Amostra ^a												
	RD1	RD2	RD3	RD4	RD5	RD6	RD7	RD8	RD9	RD10	RD11	AC^b	Especificação de graxa EP ^c
Penetração não trabalhada, P.N.T (10 ⁻¹ mm)	317	281	290	289	340	190	300	315	282	279	290	300	-
Penetração trabalhada 60 vezes, $P.T_{60}$ (10^{-1} mm)	345	320	332	302	364	290	321	335	329	318	332	341	-
NLGI	1	1	1	2	0	2	1	1	1	1	1	1	0 a 3
$\Delta = P.T_{60} - P.N.T (10^{-1} $ mm)	28	39	42	13	24	100	21	20	47	39	42	41	≤+45
Ponto de gota (°C)	201	>220	177	>220	197	>220	201	155	164	170	166	209	185 min.
Corrosão ao cobre	1b	1b	1b	1b	1b	1b	1b	1b	1b	1b	1b	1a	1a
Teste four-ball (kg)	nt	nt	nt	200	nt	nt	nt	nt	nt	nt	200	200	200 min.
Aparência	liso	liso	liso	liso	liso	liso	liso	liso	liso	liso	liso	liso	-

^a RD – código para graxas elaboradas utilizando como óleo base o resíduo da destilação da borra de neutralização (RBND); Para composição das graxas ver Tabela 1.

3.2. Análises Térmicas

O eixo principal do diagrama descrito na Figura 1 mostra as curvas termogravimétricas (TGA) para diferentes formulações de graxas, 14% de bentonita e 15 min no reator (RD1), 16% de bentonita e 25 min (RD11), 18% de bentonita e 15 min (RD2), 20% de bentonita e 25 min (RD6) e a amostra controle preparada com óleo mineral, 16% de bentonita e 25 min. Pode-se notar através do diagrama e dos resultados obtidos que a porcentagem de bentonita e o tempo de rotação no reator não influenciaram na temperatura de degradação das amostras de graxas elaboradas utilizando como óleo base o RDBN, as amostras degradaram em temperaturas muito próximas compreendidas entre 310 – 519 °C, já a amostra controle (AC) mostrou-se menos instável, com uma temperatura de degradação entre 147 e 333 °C.

Através do diagrama pode-se observar que nas graxas desenvolvidas com o RDBN houve a formação de dois picos de degradação, o primeiro de em torno de 310 a 397 °C, formado pela degradação dos componentes mais voláteis, entre eles os ácidos graxos polinsaturados e monoinsaturados e a argila bentonita que tem sua degradação entre 300 e 400 °C (LÍBANO; VISCONTE; PACHECO, 2012). Durante o aquecimento os triglicerídeos produzem compostos voláteis, estes compostos (dímeros, trímeros e polímeros) são formados principalmente por reações térmicas dos ácidos graxos insaturados, como o ácido linoleico, uns dos principais constituinte do óleo de arroz (SANTOS *et al.*, 2004; ANTUNES; LANZA; HENSE, 2013). O segundo pico de 397 a 519 °C, é caracterizado pela degradação dos compostos menos voláteis, como os ácidos graxos saturados (SANTOS *et al.*, 2005).

b Amostra controle (AC) - 67,5% (m/m) de óleo mineral, 16,0% (m/m) de espessante bentonita, 10,0%, (m/m) de clarificante, 3,0% (m/m) de antioxidante e 3,5% (m/m) de agente EP.

^c Especificações da empresa Sotolub (Bizerte, Tunísia) para graxas de extrema pressão (EP). nt − não testada.

No eixo secundário do diagrama da Figura 1 foram apresentadas as curvas de Calorimetria Diferencial de Varredura (DSC) por fluxo de calor (W/g) em função da temperatura (°C). Na curva da amostra RD11 é possível identificar dois picos exotérmicos (liberação de energia), corroborando com os dados das análises de TGA, resultados das reações de liberação dos voláteis (SANTOS *et al.*, 2005). Na curva da amostra controle é possível identificar apenas um pico resultado provavelmente das reações de degradação térmica, principalmente de hidrocarbonetos (SANTOS *et al.*, 2003).

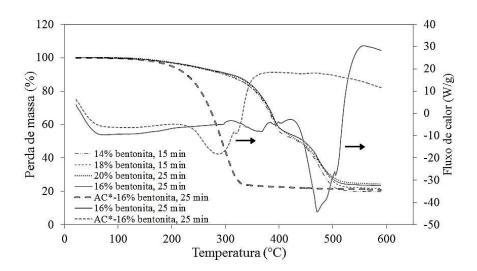


Figura 1 - Curvas de perda de massa (TGA) e fluxo de calor (DSC) vs. temperatura das graxas lubrificantes, elaboradas utilizando como óleo base o resíduo da destilação da borra de neutralização (RDBN) e diferentes quantidades de espessante, e da amostra controle. *AC – Amostra controle, elaborada com óleo mineral.

4. CONCLUSÕES

As graxas lubrificantes preparadas com o resíduo da destilação da borra de neutralização (RDBN) do óleo de arroz e espessante bentonita estão de acordo com os padrões exigidos para graxas EP (extrema pressão) e apresentaram valores de propriedades físico-químicas semelhantes a graxas encontradas na literatura.

A temperatura de degradação, encontrada a partir de análises termogravimétricas, foram maiores para graxas lubrificantes com o RDBN que para a amostra controle preparada com óleo mineral.

5. REFERÊNCIAS

AGUILLON, P. R. A. *Tribologia y lubricacion industrial y automotriz*. 2. ed. Bucaramanga: Lt Ochoa, 1993.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). ASTM D217 - 10: Standard Test Methods for Analysis of Lubricating Grease. West Conshohocken, 2010, 14 p.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). ASTM D566 – 02: Standard Test Method for Dropping Point of Lubricating Grease. West Conshohocken, 2009, 5 p.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM), ASTM D130 – 10: Standard Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test. West Conshohocken, 2010, 10 p.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). ASTM D2596 – 10: Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Grease (Four-Ball Method). West Conshohocken, 2010, 6 p.

ANTUNES, S.A; LANZA, M.; HENSE, H. Rheological properties of rice bran (Oryza sativa L.) oils processing and soapstock distillation residue. *Industrial crops and products*, v. 46, p. 111-116, 2013.

AVCI, S. European Congress Printing Inks. 2nd, 2003, Nuremberg. *Rheological additives selection for printing inks, presented in the Eurocoat Inkmakers.* (Forum).

CHTOUROU, M.; FRIKHA, M. H.; TRABELSI, M. Modified smectitic Tunisian clays used in the formulation of high performance lubricating greases. *Applied Clay Science*, v. 32, p. 210–216, 2006.

DELGADO, M.A; SANCHEZ, M.C.; VALENCIA, C.; FRANCO, J.M.; GALLEGOS, C. Relationship among microstructure, rheology and processing of a lithium lubricating grease. *Chemical Engineering Research and Design*, v. 83, p. 1085–1092, 2005.

DENNIS, H. Organoclay products containing a branched chain alkyl quaternary ammonium ion. US Pat. 5 739 087, 1998.

JESUS, S. P.; GRIMALDI, R.; HENSE, H. Recovery of γ -oryzanol from rice bran oil byproduct using supercritical fluid extraction. *Journal of Supercritical Fluids*, v. 55, p. 149–155, 2010.

LÍBANO, E.V.D.G.; VOSCONTE, L.L.Y.; PACHECO, E.B.A.V. Propriedades Térmicas de Compósitos de Polipropileno e Bentonita Organofílica. *Polímeros*, vol. 22, n. 5, p. 430-435, 2012.

MAGAURAN, E. Lubricating grease thickened with preactivated organophilic clay gallant and process for preparing organophilic clay. US Pat. 4 664 820, 1987.

MURRAY, H.H. Traditional and new applications for kaolin, smectite and polygorskite: a general overview. *Applied Clay Science*, v. 17, p. 207–221, 2000.

NARAYAN, A.V.; BARHATE, R.S.; RAGHAVARAO, K.S.M.S. Extraction and Purification of Oryzanol from Rice Bran Oil and Rice Bran Oil Soapstock. *Journal of the American Oil Chemists' Society*, v. 83, n. 8, p. 663–670, 2006.

New Age Chemical, Inc. Delafield – WI, James A. Stuart; Douglas A. Wallace. *Lubricanting Grease Composition*. C10M 169/00. US 6429175 B1. 20 nov. 2000; 6 ago. 2002. U.S. Patent Documents.

NÚÑEZ, N.; MARTÍN-ALFONSO, J.E; VALENCIA, C.; SÁNCHEZ, M.C.; FRANCO, J.M. Rheology of new green lubricating grease formulations containing cellulose pulp and its methylated derivative as thickener agents. *Industrial Crops and Products*, v. 37, p. 500 – 507, 2012.

PAIVA, L. B; MORALES, A. R.; DÍAZ, F. R. V. Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. *Cerâmica*, v. 54, p. 213 – 226, 2008.

SÁNCHEZ, R.; FRANCO, J.M.; DELGADO, M.A.; VALENCIA, C.; GALLEGOS, C. Effect of thermo-mechanical processing on the rheology of oleogels potentially applicable as biodegradable lubricating greases. *Chemical Engineering Research and Design*, v. 86, p. 1073-1082, 2008.

SÁNCHEZ, R.; STRINGARI, G.B.; FRANCO, J.M.; VALENCIA, C.; GALLEGOS, C. Use of chitin, chitosan and acylated derivatives as thickener agents of vegetable oils for biolubricant applications. *Carbohydrate Polymers*, v. 85, p. 705–714, 2011.

SANTOS, J.C.O.; SILVA, A.J.N.; SANTOS, I.M.G.; SOBRINHO, E.V.; SOUZA, A.G. Kinetic study on thermal decomposition reactions of mineral lubricant oils by thermogravimetry. In: 2° Congresso Brasileiro de P&D em Petróleo e Gás, 2003. Rio de Janeiro. *Artigo apresentado no 2° Congresso Brasileiro de P&D em Petróleo e Gás*. Rio de Janeiro: 2003.

SANTOS, J.C.O.; DANTAS, J.P.; SOUZA, A.G.; CONCEIÇÃO, M.M. Thermogravimetric analyses of the rice bran oils under frying condition. In: II CONGRESSO BRASILEIRO DE PLANTAS OLEAGINOSAS, ÓLEOS, GORDURAS E BIODIESEL, 2005. Varginha. *Artigo apresentado no II Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel*. Varginha: 2005. p. 630-635.