

PLANILHA ELETRÔNICA PARA ESTIMATIVAS DE FUGACIDADES PARCIAIS USANDO EQUAÇÃO DO VIRIAL/HAYDEN-O'CONNELL

J. S. da SILVA NETO¹, P. H. M da SILVA¹, T. O. B. FONSECA, J. A. CAVALCANTE¹ e N. A. COSTA¹

¹ Universidade Federal da Paraíba E-mail: <u>nagelalves@hotmail.com</u>

RESUMO – O trabalho tem por objetivo fornecer uma planilha eletrônica para as estimativas de fugacidades de espécies puras, de misturas e de espécies *i* presentes na mistura através da equação do virial com o segundo coeficiente estimado através da correlação de Hayden-O'Connell. O trabalho é dividido em cinco partes: a) criação do banco de dados contendo: propriedades críticas e parâmetros moleculares; b) criação de caixas de diálogos para interação do usuário com o programa, c) codificações de subprogramas VBA para as estimativas dos coeficientes do virial das espécies puras e cruzadas, d) codificações de subprogramas VBA para avaliações das propriedades volumétricas e fugacidades usando a equação do virial das expansões na pressão e na densidade molar e e) validação dos resultados fornecidos pelo programa. O resultado final é um aplicativo para fins educacionais e/ou comerciais, capaz de fornecer estimativas das propriedades volumétricas e fugacidades com rapidez e confiabilidade.

1. INTRODUÇÃO

No método preditivo proposto por Hayden e O'Connell (1975), o segundo coeficiente do virial é influenciado através dos vários tipos de forças que atuam nas moléculas. Os pesquisadores expressaram o segundo coeficiente do virial como à soma de duas contribuições individuais: a) forças físicas (forças fracas – volumétricas ou de van der Waals); b) forças químicas (forças fortes – ligação de hidrogênio e dimerização das moléculas). O resumo é apresentado no Quadro 1. A modelagem matemática é descrita em Costa (2013a, 2013b).

Quadro 1 – Resumo da correlação de Hayden-O'Connel
Segundo coeficiente: $B_{ij} = B_{ij}^F + B_{ij}^D$
Segundo coeficiente - forças volumétricas: $B_{ij}^F = (B_{apolar}^F)_{ij} + (B_{polar}^F)_{ij}$
Segundo coeficiente - interações apolares: $(B_{apolar}^F)_{ij} = b_{0ij} (0,94-1,47T_{ij}^*-0,85T_{ij}^{*2}+1,015T_{ij}^{*3})$
Segundo coeficiente - interações polares: $(B_{polar}^F)_{ij} = -b_{0ij}\mu_{ij}^*(0,75-3,0T_{ij}^*+2,1T_{ij}^{*2}+2,1T_{ij}^{*3})$
Segundo coeficiente - forças químicas: $B_{ij}^{D} = (B_{\text{metastable}} + B_{\text{bound}})_{ij} + (B_{\text{chemical}})_{ij}$

Segundo coeficiente - efeito das ligações:
$$(B_{\text{metastable}} + B_{\text{bound}})_{ij} = b_{0ij}A_{ij}\exp\left(\frac{\Delta H_{ij}}{T_{rij}}\right)$$

Segundo coeficiente – associações moleculares: $(B_{\text{Chemical}})_{ij} = b_{0ij}E_{ij}\left[1 - \exp\left(\frac{1500\eta_{ij}}{T}\right)\right]$

Para misturas multicomponentes, o procedimento para a estimativa do coeficiente do virial pode ser dividido em duas partes: a) avaliação do segundo coeficiente do virial de cada componente puro presente na mistura. As informações necessárias são as propriedades críticas ($T_c \ e \ P_c$) e raio médio de giração, $\overline{R_i}$, momento dipolo μ_{ii} e parâmetro de associação η_{ii} ; e b) avaliação do segundo coeficiente do virial cruzado de cada par de componentes presentes na mistura usando as regras de mistura proposta por Hayden e O'Connell (1975). As informações necessárias são os parâmetros dos componentes puros: (ε/k)_{ii}, σ_{ii} e w_{ii} para i = 1, 2, ..., N e parâmetros de solvatação. As correlações empregadas nas estimativas dos vários tipos de coeficientes descritos no Quadro 1 são apresentadas no Quadro 2.

Quadro 2 – Parâmetros da correlação de Hayden-O'Connell

Derômetro E. E	$\left[\exp\left[\eta_{ij}\left(\frac{650}{\left(\varepsilon/k\right)_{ij}+300}-4,27\right)\right]\right]$	Para $\eta_{ij} < 4,5$
Tarametro E. $E_{ij} = 0$	$\left[\exp\left[\eta_{ij}\left(\frac{42800}{\left(\varepsilon/k\right)_{ij}+22400}-4,27\right)\right]\right]$	Para $\eta_{ij} \ge 4,5$

Na ausência de informações experimentais para os parâmetros de solvatação, Fredenslund *et al.* (1977) fornecem roteiros, descritos nas Tabelas 1 e 2, para as estimativas desses parâmetros.

rabera 1 – rarametros de sorvatação				
Misturas contendo:	η_{ij}			
Componentes apolares	0			
Hidrocarbonetos	0			
Hidrocarbonetos e componentes apolares (exceto fluorocarbonos)	0			
Hidrocarbonetos alifáticos e um componente polar	0			

	Tabela 1	– Parâmetros	de solvatação	
--	----------	--------------	---------------	--

	rubelu 2 - rubilitos de sorvitução para compositos organicos e agua							
		1	2	3	4	5	6	
1	Hidrocarbonetos aromáticos	0	0	0	0,5	0,6	0,4	
2	Alcoóis		1,55	1,55	1,0	1,3	2,5	
3	Água				1,0	1,3	2,5	
4	Cetonas				0,9	1,1	1,8	
5	Ésteres					0,53	2,0	
6	Ácidos orgânicos						4,5	

Tabala 2	Darâmatroc	da calvat	tação para	compostos	orgânicos	a ámin
$1 a \cup c \mid a \perp -$	1 arametros	ue solva	lação para	composios	organicos	c agua

Os parâmetros cruzados $(i \neq j)$ são calculados através das expressões mostradas no Quadro 3:

Λ 1 2 D			~ 1. II.	1 - 0'0 - 11
I madro $A = Reorg$	is de mistiirs	a da correlac	ao de Hai	vden_() (onnell
Quadro J Rogia	is ac misture	i ua conciaç	ao ao ma	yuun o connen

$$w_{ij} = \frac{w_{ii} + w_{jj}}{2}, (\varepsilon/k)_{ij} = (\varepsilon/k)_{ij}^{*} C_{ij}^{\varepsilon}, \sigma_{ij} = \sigma_{ij}^{*} C_{ij}^{\sigma}, \sigma_{ij}^{*3} = \sqrt{\sigma_{ii}^{3} \sigma_{jj}^{3}} \qquad C_{ij}^{\varepsilon} = 1 - \xi_{ij} \left(\frac{n_{ij}}{n_{ij} - 6} \right)$$

$$(\varepsilon/k)_{ij}^{*} = 0, 7 \sqrt{(\varepsilon/k)_{ii} (\varepsilon/k)_{jj}} + 0, 6 \left[\frac{1}{(\varepsilon/k)_{ii}} + \frac{1}{(\varepsilon/k)_{jj}} \right] \qquad C_{ij}^{\sigma} = 1 - \frac{3\xi_{ij}}{n_{ij} - 6}, n_{ij} = 16 + 400w_{ij}$$

$$\xi_{ij} = \begin{cases} \frac{\mu_{i}^{2} (\varepsilon/k)_{jj}^{2/3} \sigma_{ij}^{4}}{(\varepsilon/k)_{ij}^{2} \sigma_{ij}^{*6}} & \text{Para } \mu_{i} > 2 \in \mu_{j} = 0 \\ \frac{\mu_{j}^{2} (\varepsilon/k)_{ij}^{2/3} \sigma_{ij}^{4}}{(\varepsilon/k)_{ij}^{*} \sigma_{ij}^{*6}} & \text{Para } \mu_{j} > 2 \in \mu_{i} = 0 \\ 0 & \text{Para todos os outros valores de } \mu_{i} \in \mu_{j} \end{cases}$$

O procedimento computacional para estimativas das fugacidades das espécies químicas pode ser resumido através das seguintes etapas:

- Estimativas dos parâmetros (ε/k)_{ii}, σ_{ii} e w_{ii} e dos coeficientes do virial para as espécies puras presentes na mistura.
- Estimativas dos coeficientes do virial cruzados usando os parâmetros $(\varepsilon/k)_{ii}$, σ_{ii} e w_{ii}
- Cálculo do segundo coeficiente do virial: $B = \sum_{i} \sum_{j} y_{i} y_{j} B_{ij}$.
- Cálculos dos coeficientes de fugacidades

Expansão na pressão: $\ln \hat{\phi}_i = \left(2\sum_j y_j B_{ij} - B\right) \left(\frac{P}{RT}\right), \ \ln \phi = \sum_{i=1} y_i \ln \hat{\phi}_i$ Expansão na densidada molar: $\ln \hat{\phi} = \left(\frac{2}{T}\right) \sum_{i=1} y_i \ln z_i$ o $\ln \phi = \sum_{i=1} y_i \ln z_i$

Expansão na densidade molar: $\ln \hat{\phi}_i = \left(\frac{2}{V}\right) \sum_j y_j B_{ij} - \ln Z$ e $\ln \phi = \sum_{i=1} y_i \ln \hat{\phi}_i$

• Cálculos das fugacidades parciais: $\hat{f}_i = y_i \hat{\phi}_i P$

2. METODOLOGIA

A metodologia empregada para o desenvolvimento do aplicativo EXCEL/VBA é apresentada na Figura 1.

Figura 1 – Esquema do desenvolvimento do aplicativo

2.1. Etapas do desenvolvimento do aplicativo

Para demonstrar as etapas do aplicativo criado, considere uma mistura de nitrogênio (1) - oxigênio (2) com y1 = 0,79 molar a 5 bar e 180 K.

<u>Banco de dados</u>: O banco de dados contém as propriedades físicas de 60 espécies químicas (temperatura normal de ebulição, temperatura crítica, pressão crítica, volume molar crítico, fator, fator acêntrico e momento dipolo). Três conjuntos de propriedades físicas foram colocados no banco de dados: PF1 – reportadas por Reid et al. (1988); PF2 – reportadas por Poling et al. (2000) e PF3 – reportadas por Smith et al. (2007). Os raios médios de giração e os parâmetros de associação foram obtidos de Fredenslund et al. (1975), Prausntiz et al. (1980) e Sherwood et al. (1977).

<u>Quantidade de espécies químicas</u>: A caixa de diálogo para a escolha da quantidade de espécies presentes no sistema é mostrada na Figura 2. O usuário pode escolher na faixa de 1 a 12 espécies.

Escolha de espécies químicas: A caixa de diálogo para a escolha das espécies presentes é mostrada na Figura 3.

Escolha do Número de Componentes 🛛 🔀	Escolha das Espécies Químicas
Escolha da Quantidade de Espécies Químicas	PF1 => Propriedades físicas reportadas por Reid et al. (1988) PF2 => Propriedades físicas reportadas por Poling et al. (2000) PF3 => Propriedades físicas reportadas por Smith et al. (2007)
2	As frações molares devem ser escritas virgulas. Ex.: 0,85 Frações Molares Nitrogênio (PF1) Nitrogênio (PF1) 0,79 Oxigênio (PF1) Oxigênio (PF1) 0,21
OK Cancelar	OK Cancelar
Figura 2 – Escolha da quantidade de espécies	Figura 3 – Escolha das espécies Químicas

Especificações dos parâmetros de associação e solvatação: Se a escolha do número de espécies for maior que um, o aplicativo abre a caixa de diálogo para as especificações dos parâmetros de associação e solvatação (Figura 4).

<u>Escolha da equação do virial</u>: As opções para os cálculos das propriedades volumétricas e fugacidades são: equação do virial da expansão na pressão e expansão na densidade molar (Figura5).

Parâmetros Binários 🛛 🔀	Escolha da Equação do virial 🛛 🔀
N2 O2 N2 0 O2 0 O2 0	Escolha da Equação do virial Expansão na Pressão Expansão na Densidade Molar
OK Cancelar	OK Cancelar
Figura 4– Especificações dos parâmetros	Figura 5 – Especificações dos parâmetros

Escolha do tipo de variáveis independentes: A caixa de diálogo para a escolha das variáveis intensivas disponíveis para o cálculo é apresentada na Figura 6.

Especificações: A caixa de diálogo para as especificações da temperatura e da pressão é apresentada na Figura 7.

Especificações Independentes 🛛 🔀	Especificações Adicionais
Dados Independentes	Excel em Português, as constantes do tipo real devem ser escritas com virgula decimal Ex. 298,15 Excel em Inglês, as constantes do tipo real devem ser escritas com ponto decimal Ex. 298.15
 Temperatura, Pressão e Composição Temperatura, Volume Molar e Composição 	Pressão (bar) 30 Temperatura (K) 180
OK Cancelar	OK Cancelar
Figura 6– Especificações dos parâmetros	Figura 7 – Especificações dos parâmetros

3. RESULTADOS – VALIDAÇÃO DO APLICATIVO

Vários sistemas foram utilizados para a validação do aplicativo proposto, ou seja, para a verificação das eficiências numéricas dos subprogramas codificados para as estimativas das fugacidades através da equação do virial. Este trabalho mostra apenas alguns resultados obtidos.

<u>Coeficiente de fugacidade do n-butano</u>: Na temperatura de 368,25 K, Fredenslund et al. (1975) reportam o valor experimental do segundo coeficiente do virial do n-butano igual a -444,2 cm³/mol. A comparação entre os valores reportados pelos pesquisadores e os estimados neste trabalho é apresentada na Tabela 3. As propriedades físicas utilizadas nas estimativas são: a) PF1: $T_c = 425,2$ K, $P_c = 38$ bar e w = 0,199; b) PF2: $T_c = 425,12$ K, $P_c = 37,96$ bar e w = 0,2 e c) PF3: Tc = 425,1 K, $P_c = 37,96$ bar e w = 0,2. O segundo coeficiente do viral calculado é: a) PF1: B = -436,54 cm³/mol; b) PF2: B = -436,74 cm³/mol; c) PF3: B = -436,67 cm³/mol

		Iuceiu	- S Itebuik		b para o n	outuno u oo	0,20 11	
D (atm)		Expansão	na pressão		Expansão na densidade molar			
r (atili)	Fred	PF1	PF2	PF3	Fred	PF1	PF2	PF3
1	0,9854	0,9857	0,9857	0,9857	0,9853	0,9856	0,9855	0,9855
10	0,8632	0,8655	0,8654	0,8654	0,8514	0,8541	0,8540	0,8540

Tabela 3 – Resultados obtidos para o n-butano a 368,25 K

a) Fred – valores reportados por Fredenslund et al. (1975) e b) PF1, PF2 e PF3 – são os valores calculados usando as propriedades físicas do banco de dados PF1, PF2 e PF3

Os resultados obtidos com os três conjuntos de propriedades físicas apresentam boas concordâncias quando comparados aos valores reportados por Fredenslund et al. (1975), tanto para estimativas usando a equação do virial na expansão da pressão como para a expansão na densidade molar. Pode se observado que as estimativas do segundo coeficiente do virial usando a correlação de Hayden-O'Connell com os três conjuntos de temperatura estão dentro das incertezas experimentais.

<u>Sistema nitrogênio (1) – metano (2)</u>: A comparação entre os resultados reportados por Smith et al. (2007) com os obtidos através do aplicativo para a mistura de 40 % em base molar do nitrogênio (1) e metano (2) a 200 K e 30 bar é apresentada na Tabela 4. As propriedades físicas são: $T_{c1} = 33,2$ K, $T_{c2} = 369,8$ K, $P_{c1} = 13$ bar e $P_{c2} = 42,5$ bar. Os raios médios de giração são: $\overline{R}_1 = 0,547$ Å e $\overline{R}_2 = 1,118$ Å. Os parâmetros de associação e solvatação são: $\eta_{ij} = 0$ para i e j = 1, 2.

	B ₁₁	B ₂₂	B ₁₂	В	Ζ	$\hat{\phi_1}$	$\hat{\phi}_2$
Smith	-35,2	-105,0	-59,8	-72,14	0,870	0,9511	0,8324
PF1	-40,79	-107,29	-66,70	-77,17	0,861	0,9380	0,8275
PF2	-40,70	-107,58	-66,71	-77,26	0,861	0,9382	0,8271
PF3	-40,67	-107,65	-66,71	-77,28	0,861	0,9383	0,8270

Tabela 4 – Resultados finais para a mistura de nitrogênio (1) – metano (2) a 200 K

B é o segundo coeficiente do virial da mistura; B_{ij} são os coeficientes do virial das espécies puras e cruzadas; *Z* é o fator de compressibilidade e $\hat{\phi}_i$ é coeficiente de fugacidade da espécie *i*.

Os resultados mostrados na Tabela 4 indicam que os valores estimados através do aplicativo proposto apresentam boas concordâncias com os valores reportados por Smith et al. (2007).

Sistema ternário metano (1) – etano (2) – propano (3): A comparação entre os resultados reportados por Smith et al. (2007) com os obtidos através do aplicativo para a mistura de 21 % em base molar do metano (1), 43 % de etano (2) e 36 % de propano (3) a 373,15 K e 35 bar é apresentada na Tabela 5. As propriedades físicas são: a) PF1: $T_{c1} = 190,4$ K, $T_{c2} = 305,4$ K, $T_{c3} = 369,8$ K, $P_{c1} = 46$ bar, $P_{c2} = 48,8$ bar, $P_{c3} = 42,5$ bar; b) PF2: $T_{c1} = 190,56$ K, $T_{c2} = 305,32$ K, $T_{c3} = 369,83$ K, $P_{c1} = 45,99$ bar, $P_{c2} = 48,72$ bar, $P_{c2} = 42,48$ bar; c) PF3: $T_{c1} = 190,6$ K, $T_{c2} = 305,3$ K, $T_{c3} = 369,8$ K, $P_{c1} = 45,99$ bar, $P_{c2} = 48,72$ bar, $P_{c3} = 42,48$ bar; c) PF3: $T_{c1} = 190,6$ K, $T_{c2} = 305,3$ K, $T_{c3} = 369,8$ K, $P_{c1} = 45,99$ bar, $P_{c2} = 48,72$ bar, $P_{c3} = 42,48$ bar; c) PF3: $T_{c1} = 190,6$ K, $T_{c2} = 305,3$ K, $T_{c3} = 369,8$ K, $P_{c1} = 45,99$ bar, $P_{c2} = 48,72$ bar, $P_{c3} = 42,48$ bar; c) PF3: $T_{c1} = 190,6$ K, $T_{c2} = 305,3$ K, $T_{c3} = 369,8$ K, $P_{c1} = 45,99$ bar, $P_{c2} = 48,72$ bar, $P_{c3} = 42,48$ bar. Os raios médios de giração são: $\overline{R}_1 = 1,118$ Å, $\overline{R}_2 = 1,826$ Å e $\overline{R}_3 = 2,431$ Å. Os parâmetros de associação e solvatação são: $\eta_{ij} = 0$ para $i \in j = 1, 2, 3$.

Tabela 5 – Resultados finais para a mistura de nitrogênio (1) – metano (2) a 200 K

	$\hat{\pmb{\phi}_1}$	$\hat{\phi}_2$	$\hat{\phi}_{_3}$	\hat{f}_1 (bar)	\hat{f}_2 (bar)	\hat{f}_3 (bar)
Smith	1,0190	0,8810	0,7750	7,491	13,254	9,764
PF1	1,0209	0,8784	0,7792	7,504	13,220	9,817
PF2	1,0208	0,8783	0,7790	7,503	13,219	9,815
PF3	1,0207	0,8784	0,7790	7,502	13,219	9,816

Os resultados dos coeficientes de fugacidades e das fugacidades dos componentes presentes na misturas, mostrados na Tabela 5, indicam que os valores estimados através do aplicativo proposto apresentam excelentes concordâncias com os valores reportados por Smith et al. (2007).

4. CONCLUSÃO

Este trabalho apresenta uma planilha capaz de fornecer com confiabilidade e rapidez as estimativas das propriedades volumétricas, de fugacidades de espécies puras, de mistura e de componentes de uma mistura. Deve ser observado que a precisão numérica dessas estimativas está associada à confiabilidade da equação de estado do virial truncada no segundo termo, que fornece boas estimativas das propriedades volumétricas para sistemas cuja densidade molar é inferior a 1/3 da densidade crítica, ou seja, em pressões baixas ou moderadas.

5. REFERÊNCIA

- COSTA, N. A. *Modelagem Matemática da Termodinâmica Química Equações de Estado*. Volume I. Documento pessoal, 2014a.
- COSTA, N. A. Modelagem Matemática da Termodinâmica Química Fugacidade/Coeficiente de Fugacidade. Volume IV. Documento pessoal, 2014b.
- FREDENSLUND, A. GMEHLING, J; RASMUSSEN, P. Vapor-Liquid Equilibria Using UNIFAC A Group-Contribution Method. Elsevier Scientific Publishing Company, 1977.
- HAYDEN, J. G; O'CONNELL, J. P. A Generalized Method for Predicting Second Virial Coefficient. Ind. Eng. Chem. Proc. Des. Dev. Vol. 14, 209-216.
- REID, R. C; PRAUSNITZ, J. M; POLING, B. E. *The Properties of Gases & Liquids*. Fourth Edition. McGraw-Hill Book Company, 1988.
- POLING, B. E; PRAUSNITZ, J. M; O'CONNEL, J. P. *The Properties of Gases and Liquids*. Fifth Edition. McGraw-Hill, 2000.
- PRAUSNITZ, J. M; ANDERSON, T. F; GRENS, E. A; ECKERT, C. A; HSIEH, R; O'CONNELL, J. P. *Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria*. Prentice-Hall, Inc, 1980.
- SHERWOOD, T. K., REID, R. C; PRAUSNITZ, J. M. *The Properties of Gases & Liquids*. Third Edition. McGraw-Hill Book Company, 1977.
- SMITH, J. M; Van Ness, H. C; ABBOTT, M. M. Introdução à Termodinâmica da Engenharia Química. Quinta Edição. LTC; 2007.