

AVALIAÇÃO DA EdE MATTEDI-TAVARES-CASTIER (MTC) PARA A DESCRIÇÃO DE DENSIDADE, PRESSÃO DE VAPOR E VELOCIDADE DO SOM DE HIDROCARBONETOS

D. HOFFMANN¹, S. MATTEDI¹, CASTIER, M.² e M. PAREDES³

¹ Programa de Pós Graduação em Engenharia Química, Universidade Federal da Bahia ² Chemical Engineering Program, Texas A&M University at Qatar ³ Instituto de Química – Departamento de Engenharia Química – UERJ E-mail para contato: davih1@yahoo.com.br

RESUMO – A economia exige processos cada vez mais eficientes e, para desenvolvê-los, podem-se utilizar modelos, através dos quais é possível descrever o comportamento termodinâmico de fluidos a partir de dados de pressão, volume, temperatura e/ou composição. Este trabalho procura, através da comparação com dados experimentais de densidade, pressão de vapor e velocidade do som em fase líquida, analisar o desempenho da equação de estado Mattedi-Tavares-Castier (MTC), buscando conjuntos de parâmetros e correlações que tornem a EdE capaz de descrever adequadamente todas as propriedades de alcanos lineares consideradas neste trabalho. Os resultados mostram que o melhor conjunto de parâmetros apresenta desvios abaixo de 5,02%, na mesma ordem de grandeza dos desvios encontrados na literatura. Além disso, os parâmetros Q, V^a e u₀₀/R apresentam correlação com o número de carbonos dos respectivos alcanos, sendo possível reduzir a quantidade de parâmetros da equação para dois. Por fim, conclui-se que o termo relativo à energia característica de interação entre moléculas, parâmetro B, é independente da temperatura.

1. INTRODUÇÃO

A economia exige processos e equipamentos cada vez mais eficientes e a sociedade impõe a prática da sustentabilidade em toda a cadeia industrial. Para desenvolvê-los, é necessária a descrição de propriedades físicas dos fluidos (puros e em misturas) envolvidos. Para tanto, podem-se utilizar equações de estado (EdE), através das quais é possível descrever o comportamento termodinâmico a partir de dados de pressão, volume, temperatura e composição. As equações são originalmente ajustadas para dados de equilíbrio de fases, no entanto é preciso entender também o comportamento de outras propriedades, entre elas densidade e velocidade do som e, normalmente, os modelos falham na descrição destas propriedades para a região de líquido.

Visando a aplicação futura em sistemas de hidrocarbonetos (por exemplo, em sistemas de interesse da indústria do petróleo), foi escolhido um conjunto de alcanos lineares (C1-C20) para avaliar a capacidade da EdE MTC, desenvolvida por Mateddi *et al* (1998), baseada na teoria de van der Waals generalizada, em representar o comportamento da velocidade do som, pressão de vapor e

densidade de tais substâncias. Primeiramente foram levantados quais os conjuntos de parâmetros que apresentam os melhores resultados, utilizando-se os dados experimentais de n-hexano para, em seguida, aplicá-los aos dados dos outros alcanos estudados. Os resultados obtidos foram comparados com aqueles apresentados por Liang *et al* (2012), para a EdE PC-SAFT utilizando três parâmetros. Além disso, percebeu-se que alguns parâmetros da EdE MTC apresentavam correlação com o número de carbonos dos alcanos, de forma que o resultado da aplicação de tais correlações aos dados experimentais de C6-C20 foram comparados com os demais resultados.

2. EQUAÇÃO DE ESTADO MATTEDI-TAVARES-CASTIER (MTC)

O modelo MTC é uma EdE baseada na teoria de fluido reticulado, cuja função de partição é obtida pela teoria de van der Waals Generalizada, ou seja, pelo produto de uma contribuição atérmica e uma contribuição residual para a energia livre de Helmholtz (Sandler 1985).

A contribuição atérmica, do modelo de retículo de Staverman-Guggenhenim, leva em conta os efeitos entrópicos devido à diferença de tamanho e forma das moléculas. Já a contribuição residual leva em conta as interações entre as moléculas, ou seja, a energia configuracional do fluido.

A EdE MTC apresenta os seguintes parâmetros: Q representa a área superficial da molécula, z representa o número de coordenação da matriz reticular sendo que nesse trabalho se convencionou ser igual a 10 (Mateddi *et al* 1998), v^{*} representa o volume ocupado por um mol de células, V^a representa o volume de compactação molar, ou seja, o volume de um mol quando a pressão tende a infinito, Ψ representa a constante característica do retículo, u₀₀/R é o parâmetro independente da temperatura da energia característica de interação entre moléculas e B é o parâmetro dependente.

A partir de EdEs, são derivadas equações para diversas propriedades termodinâmicas, como coeficiente de fugacidade (Mateddi *et al* 1998), Cp (Liang *et al* 2012), fator de compressibilidade, densidade (Mateddi 1997), e velocidade do som (Paredes *et al* 2012). Através de dados experimentais, são obtidos os valores dos parâmetros apresentados para cada substância química de interesse.

3. METODOLOGIA

3.1. Dados

Foram utilizados dois conjuntos de dados, um obtido junto à base de dados do NIST e às correlações do DIPPR (conjunto I) e outro obtido através de uma extensa pesquisa bibliográfica em busca de dados experimentais (conjunto II).

O conjunto I é formado por dados de pressão de vapor, densidade da fase líquida e velocidade do som na fase líquida na temperatura reduzida entre 0,45 e 0,9 para alcanos lineares de metano (C1) a decano (C10). Tal conjunto foi utilizado para: (1) encontrar uma correlação entre parâmetros e o número de átomos de carbono na cadeia; (2) comparar com os resultados obtidos por Liang *et al* (2012), para a EdE PC-SAFT, utilizando um conjunto de três parâmetros.

O conjunto II é formado por dados de pressão de vapor na temperatura reduzida entre 0,45 e 0,9 obtidos utilizando a correlação do DIPPR e dados de velocidade do som e densidade obtidos na literatura, conforme Tabela 1.

Alcanos	Faixa de	Faixa de Pressão	Número de dados	Número de dados Vel.
	Temperatura (K)	(MPa)	Densidade	do Som
C6 - C20	243,16 - 670,00	0,1 - 700,0	2267	1211

Tabela 1 – Dados	Experimentais
------------------	---------------

3.2. Função Objetivo

Os parâmetros Q, v^* , V^a , u_{00}/R e B foram obtidos por regressão não linear, através da função objetivo apresentada na Equação 1 e dos dados experimentais, utilizando o Solver do software Microsoft Excel 2007.

(1)

onde, P é a pressão de vapor, ρ é a densidade e u é a velocidade do som. Os sobrescritos exp e calc se referem ao valor experimental e calculado, respectivamente, o subscrito i se refere ao ponto, NP, N ρ , Nu é o número de pontos de pressão de vapor, de densidade e de velocidade do som respectivamente.

4. **RESULTADOS E DISCUSSÃO**

4.1. Identificação dos Melhores Conjuntos de Parâmetros

Tendo em vista as múltiplas opções de conjuntos de parâmetros que podem ser utilizados para descrever o comportamento dos alcanos utilizando a EdE MTC, foram utilizados os dados da literatura de n-hexano para identificar os conjuntos que fornecem os melhores resultados.

Quanto menor for o valor da função objetivo, melhor é o resultado apresentado pelo conjunto de parâmetros. Foram testados 24 conjuntos sendo que os três melhores são apresentados na Tabela 2. Os conjuntos K, W e Y contêm 4, 4 e 5 parâmetros a serem estimados, respectivamente, incluindo Q e V^a. Percebe-se que os conjuntos K, W e Y apresentam Ψ igual a 18 e u₀₀/R com valor livre.

Coniunto		Parân					
Conjunto	Ψ B (K) Ψ v^* (cm ³ /mol) u_{00}/R (K)				Função Objetivo x 100		
K	livre	18	10	livre	0,45		
W	fixo 0	18	livre	livre	0,37		
Y	livre	18	livre	livre	0,37		

4.2. Comparação com PC-SAFT

A Tabela 3 e a Tabela 4 apresentam os desvios absolutos médios (%AAD) de densidade, velocidade do som e pressão de vapor, obtidos através a EdE MTC e utilizando os conjuntos de parâmetros K, W e Y para os conjuntos de dados I e II, respectivamente. Tais resultados são comparados com os resultados obtidos por Liang *et al* (2012) para a EdE PC-SAFT, utilizando três parâmetros.

		C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	Média
e	Conj. K	0,37	0,40	0,95	1,20	1,48	1,83	1,65	2,02	1,35	1,40	1,26
idad	Conj. W	3,29	2,49	1,58	0,82	0,79	0,77	0,61	0,82	0,50	0,51	1,22
ensi	Conj. Y	0,87	0,90	0,74	0,53	0,49	0,44	0,45	0,64	0,49	0,49	0,61
D	PC-SAFT ¹	0,83	1,75	1,90	1,80	1,59	1,49	1,63	1,56	1,82	1,59	1,60
op	Conj. K	3,68	2,43	2,52	2,78	2,85	2,63	2,62	2,37	2,10	1,78	2,58
lade m	Conj. W	4,70	1,72	2,45	2,80	2,94	2,86	3,12	3,07	3,00	2,73	2,94
ocic So	Conj. Y	3,32	1,95	2,60	3,00	3,36	3,48	3,71	3,30	3,21	2,81	3,08
Vel	PC-SAFT ¹	1,26	0,90	1,54	1,34	1,68	0,58	1,52	0,41	2,30	1,54	1,31
e	Conj. K	1,23	0,38	0,73	2,02	3,68	5,21	5,67	4,67	5,30	4,76	3,36
ão d oor	Conj. W	3,37	0,76	1,23	1,64	2,73	3,35	3,25	1,64	1,86	1,07	2,09
ress Vaj	Conj. Y	1,06	0,16	0,55	1,04	1,65	1,91	1,80	0,99	1,28	0,82	1,13
P	PC-SAFT ¹	0,52	0,68	0,65	0,72	0,58	1,74	1,13	1,16	1,40	1,28	0,99
1		,	,	,	,	,	,	,	,	,	,	,

Tabela 3 - Desvios Absolutos Médios (%) do Conjunto I

¹Liang et al (2012)

		C6	C7	C8	C9	C10	C11	C12	C13
e	Conj. K	2,38	0,49	0,69	2,50	0,98	1,39	1,09	1,55
idad	Conj. W	2,96	1,25	0,68	3,25	1,24	1,93	2,40	0,62
ensi	Conj. Y	2,92	1,20	0,86	3,37	1,15	2,24	1,43	0,66
	PC-SAFT ¹	1,49	1,63	1,56	1,82	1,59	1,41	1,41	1,37
op	Conj. K	3,41	5,47	0,84	1,19	2,96	1,29	1,32	8,76
lade	Conj. W	3,94	6,70	1,08	1,79	3,98	2,17	5,66	2,14
ocid	Conj. Y	3,90	6,33	1,32	1,91	3,77	3,25	2,92	2,64
Vel	PC-SAFT ¹	2,97	3,47	2,69	2,91	3,93	2,03	2,07	2,24
e	Conj. K	5,29	5,32	4,79	5,41	5,05	8,68	9,08	6,54
ão d por	Conj. W	3,62	3,02	1,70	1,93	0,83	4,36	4,44	2,24
ressi Vaj	Conj. Y	3,70	3,57	0,44	1,49	1,48	1,94	1,52	0,97
P	PC-SAFT ¹	1,74	1,13	1,16	1,40	1,28	1,52	1,37	1,43
		C14	C15	C16	C17	C18	C19	C20	Média
	Conj. K	C14 0,38	C15 1,19	C16 0,69	C17 0,36	C18 2,24	C19 1,29	C20 0,32	Média 1,17
idade	Conj. K Conj. W	C14 0,38 2,30	C15 1,19 0,91	C16 0,69 0,39	C17 0,36 1,81	C18 2,24 1,97	C19 1,29 2,32	C20 0,32 1,11	Média 1,17 1,67
ensidade	Conj. K Conj. W Conj. Y	C14 0,38 2,30 0,71	C15 1,19 0,91 1,00	C16 0,69 0,39 0,60	C17 0,36 1,81 0,67	C18 2,24 1,97 1,95	C19 1,29 2,32 2,40	C20 0,32 1,11 1,21	Média 1,17 1,67 1,49
Densidade	Conj. K Conj. W Conj. Y PC-SAFT ¹	C14 0,38 2,30 0,71 1,37	C15 1,19 0,91 1,00 1,37	C16 0,69 0,39 0,60 1,33	C17 0,36 1,81 0,67 1,29	C18 2,24 1,97 1,95 1,28	C19 1,29 2,32 2,40 1,26	C20 0,32 1,11 1,21 1,24	Média 1,17 1,67 1,49 1,43
do Densidade	Conj. K Conj. W Conj. Y PC-SAFT ¹ Conj. K	C14 0,38 2,30 0,71 1,37 2,26	C15 1,19 0,91 1,00 1,37 3,76	C16 0,69 0,39 0,60 1,33 3,36	C17 0,36 1,81 0,67 1,29 11,11	C18 2,24 1,97 1,95 1,28 7,29	C19 1,29 2,32 2,40 1,26 7,12	C20 0,32 1,11 1,21 1,24 5,34	Média 1,17 1,67 1,49 1,43 4,37
lade do Densidade	Conj. K Conj. W Conj. Y PC-SAFT ¹ Conj. K Conj. W	C14 0,38 2,30 0,71 1,37 2,26 5,41	C15 1,19 0,91 1,00 1,37 3,76 4,59	C16 0,69 0,39 0,60 1,33 3,36 4,94	C17 0,36 1,81 0,67 1,29 11,11 11,41	C18 2,24 1,97 1,95 1,28 7,29 7,66	C19 1,29 2,32 2,40 1,26 7,12 8,09	C20 0,32 1,11 1,21 1,24 5,34 7,66	Média 1,17 1,67 1,49 1,43 4,37 5,15
ocidade do Densidade Som	Conj. K Conj. W Conj. Y PC-SAFT ¹ Conj. K Conj. W Conj. Y	C14 0,38 2,30 0,71 1,37 2,26 5,41 4,00	C15 1,19 0,91 1,00 1,37 3,76 4,59 4,11	C16 0,69 0,39 0,60 1,33 3,36 4,94 5,62	C17 0,36 1,81 0,67 1,29 11,11 11,41 11,33	C18 2,24 1,97 1,95 1,28 7,29 7,66 7,94	C19 1,29 2,32 2,40 1,26 7,12 8,09 8,58	C20 0,32 1,11 1,21 1,24 5,34 7,66 7,70	Média 1,17 1,67 1,49 1,43 4,37 5,15 5,02
Velocidade do Densidade Som	Conj. K Conj. W Conj. Y PC-SAFT ¹ Conj. K Conj. W Conj. Y PC-SAFT ¹	C14 0,38 2,30 0,71 1,37 2,26 5,41 4,00 2,52	C15 1,19 0,91 1,00 1,37 3,76 4,59 4,11 2,94	C16 0,69 0,39 0,60 1,33 3,36 4,94 5,62 2,79	C17 0,36 1,81 0,67 1,29 11,11 11,41 11,33 3,26	C18 2,24 1,97 1,95 1,28 7,29 7,66 7,94 3,47	C19 1,29 2,32 2,40 1,26 7,12 8,09 8,58 3,66	C20 0,32 1,11 1,21 1,24 5,34 7,66 7,70 3,46	Média 1,17 1,67 1,49 1,43 4,37 5,15 5,02 2,96
le Velocidade do Densidade	Conj. K Conj. W Conj. Y PC-SAFT ¹ Conj. K Conj. W Conj. Y PC-SAFT ¹ Conj. K	C14 0,38 2,30 0,71 1,37 2,26 5,41 4,00 2,52 10,96	C15 1,19 0,91 1,00 1,37 3,76 4,59 4,11 2,94 12,37	C16 0,69 0,39 0,60 1,33 3,36 4,94 5,62 2,79 10,93	C17 0,36 1,81 0,67 1,29 11,11 11,41 11,33 3,26 9,24	C18 2,24 1,97 1,95 1,28 7,29 7,66 7,94 3,47 14,20	C19 1,29 2,32 2,40 1,26 7,12 8,09 8,58 3,66 11,44	C20 0,32 1,11 1,21 1,24 5,34 7,66 7,70 3,46 10,15	Média 1,17 1,67 1,49 1,43 4,37 5,15 5,02 2,96 8,63
ão de Velocidade do Densidade	Conj. K Conj. W Conj. Y PC-SAFT ¹ Conj. K Conj. W PC-SAFT ¹ Conj. K Conj. K	C14 0,38 2,30 0,71 1,37 2,26 5,41 4,00 2,52 10,96 5,83	C15 1,19 0,91 1,00 1,37 3,76 4,59 4,11 2,94 12,37 5,97	C16 0,69 0,39 0,60 1,33 3,36 4,94 5,62 2,79 10,93 4,32	C17 0,36 1,81 0,67 1,29 11,11 11,41 11,33 3,26 9,24 6,62	C18 2,24 1,97 1,95 1,28 7,29 7,66 7,94 3,47 14,20 5,02	C19 1,29 2,32 2,40 1,26 7,12 8,09 8,58 3,66 11,44 5,85	C20 0,32 1,11 1,21 1,24 5,34 7,66 7,70 3,46 10,15 3,24	Média 1,17 1,67 1,49 1,43 4,37 5,15 5,02 2,96 8,63 3,93
ressão de Velocidade do Densidade Vapor	Conj. K Conj. W Conj. Y PC-SAFT ¹ Conj. K Conj. W PC-SAFT ¹ Conj. K Conj. K Conj. W	C14 0,38 2,30 0,71 1,37 2,26 5,41 4,00 2,52 10,96 5,83 1,94	C15 1,19 0,91 1,00 1,37 3,76 4,59 4,11 2,94 12,37 5,97 5,50	C16 0,69 0,39 0,60 1,33 3,36 4,94 5,62 2,79 10,93 4,32 2,71	C17 0,36 1,81 0,67 1,29 11,11 11,41 11,33 3,26 9,24 6,62 3,01	C18 2,24 1,97 1,95 1,28 7,29 7,66 7,94 3,47 14,20 5,02 5,20	C19 1,29 2,32 2,40 1,26 7,12 8,09 8,58 3,66 11,44 5,85 4,96	C20 0,32 1,11 1,21 1,24 5,34 7,66 7,70 3,46 10,15 3,24 3,05	Média 1,17 1,67 1,49 1,43 4,37 5,15 5,02 2,96 8,63 3,93 2,77

Tabela 4 – Desvios Absolutos Médios (%) do Conjunto II

¹Liang et al (2012)

Percebem-se em ambas as tabelas que os valores médios dos desvios (%AAD) dos três conjuntos são da mesma ordem de grandeza daquele encontrado por Liang *et al* (2012), com exceção do valor médio de pressão de vapor do conjunto K, que destoou dos demais.

A EdE MTC apresentou desvios (%AAD) de velocidade do som elevado para os compostos que

apresentavam uma parcela considerável de dados experimentais em pressões superiores à atmosférica. O caso mais emblemático é para o heptadecano (C17), onde o desvio %AAD passa de 10% para os três conjuntos de parâmetros estudados.

Como já era esperado, devido ao resultado apresentado na Tabela 2, os resultados para os conjuntos de parâmetros Y e W são muito semelhantes, de forma que se pode concluir que o parâmetro B pode ser desprezado para alcanos lineares, ou seja, o termo relativo à energia característica de interação entre moléculas é praticamente independente da temperatura.

4.3. Correlação de Parâmetros do Conjunto Y

Paredes *et al* (1994) verificaram que há correlação entre os parâmetros u_{00}/R , V^a e Q e o número de carbono para alcanos lineares. Dessa forma, partindo-se do conjunto de dados I, que são mais comportados, verificou-se que também existe tal correlação nesse trabalho, conforme pode ser notado na Figura 1. Tais correlações foram aplicadas no conjunto de parâmetros Y, reduzindo-o a apenas dois parâmetros. Os valores de R² para u_{00}/R , V^a e Q foram 0,998, 0,999 e 0,950, respectivamente. Os resultados são apresentados na Tabela 5.

Figura 1- Correlação entre parâmetros (u_{00}/R (1a), $V^{a}(1b) \in Q(1c)$) e o número de carbonos

O valor médio dos desvios %AAD da densidade para os parâmetros correlacionados, apresentados na Tabela 5, consegue ser melhor que aquele obtido pelo conjunto Y, além de ser muito

parecido com o resultado obtido por Liang et al (2012).

Já em relação à velocidade do som e pressão de vapor, os valores dos desvios do conjunto correlacionado apresenta uma grande diferença para os valores obtidos com o conjunto de parâmetros Y, para ambas as propriedades, a partir do tetradecano (C14). Isso pode ter ocorrido devido à correlação ter sido obtida com dados de C1 a C10. É possível que, caso sejam geradas correlações utilizando dados de C1 a C20, os resultados entre dados correlacionados e o conjunto de parâmetros Y sejam muito semelhantes.

			C6	C7	C8	C9	C10	C11	C12	C13
	ıde	Correlação	3,63	0,55	0,75	3,04	1,30	3,30	1,64	0,86
	nsida	Conj. Y	2,92	1,20	0,86	3,37	1,15	2,24	1,43	0,66
	Dei	PC-SAFT ¹	1,49	1,63	1,56	1,82	1,59	1,41	1,41	1,37
	ade n	Correlação	4,67	8,07	1,23	2,22	5,53	2,61	3,91	2,79
	ocida Sor	Conj. Y	3,90	6,33	1,32	1,91	3,77	3,25	2,92	2,64
	Velodc	PC-SAFT ¹	2,97	3,47	2,69	2,91	3,93	2,03	2,07	2,24
	de r	Correlação	2,68	2,72	0,91	1,18	2,65	3,70	4,35	2,67
	ssão 'apoi	Conj. Y	3,70	3,57	0,44	1,49	1,48	1,94	1,52	0,97
	Pre	PC-SAFT ¹	1,74	1,13	1,16	1,40	1,28	1,52	1,37	1,43
LL			C14	C15	C16	C17	C18	C19	C20	Média
	ıde	Correlação	0,91	0,74	0,81	1,09	1,25	0,72	0,98	1,44
	nsida	Conj. Y	0,71	1,00	0,60	0,67	1,95	2,40	1,21	1,49
	Dei	PC-SAFT ¹	1,37	1,37	1,33	1,29	1,28	1,26	1,24	1,43
	ade n	Correlação	5,39	4,29	8,43	16,11	9,33	8,95	10,28	6,25
	ocida Sor	Conj. Y	4,00	4,11	5,62	11,33	7,94	8,58	7,70	5,02
	Vel dc	PC-SAFT ¹	2,52	2,94	2,79	3,26	3,47	3,66	3,46	2,96
	de r	Correlação	7,43	10,48	9,11	9,76	13,73	14,02	15,59	6,73
	ssão 'apoi	Conj. Y	1,94	5,50	2,71	3,01	5,20	4,96	3,05	2,77
	Pre	PC-SAFT ¹	1,11	1,77	1,54	1,49	2,21	2,71	2,57	1,63
J										

Tabela 5 – Desvios Absolutos Médios (%) para o cálculo de densidade para os dados do Conjunto II com Correlação

¹Liang et al (2012)

5. CONCLUSÃO

Este trabalho avalia a capacidade da EdE MTC, baseada na teoria de van der Waals generalizada, em representar o comportamento da velocidade do som, pressão de vapor e densidade de alcanos lineares (C1-C20), utilizando dois conjuntos de dados nas faixas de 0,45 < Tr < 0,9 para dados de saturação e 243,16K < T < 670,00K e 0,1 MPa < P < 700 MPa para os demais dados. O melhor conjunto de parâmetros apresenta desvios abaixo de 5,02%, na mesma ordem de grandeza dos desvios obtidos por Liang *et al* (2012), para a EdE PC-SAFT utilizando três parâmetros. O parâmetro B pode ser desprezado para alcanos lineares, ou seja, o termo relativo à energia caracteristica de interação entre moléculas é independente da temperatura. Há correlação entre o número de carbono e o parâmetro relativo ao volume de compactação molar (V^a) e o parâmetro relativo à área superficial da molécula (Q). A utilização de tais correlações permite desenvolver a EdE MTC com apenas dois parâmetros.

6. REFERÊNCIAS

DIPPR 801 database. Design Institute for Physical Property Data. AIChE, New York, 1998.

LIONG, X.; MOGENSEN, B.M.; THONSEN, K.; YAN, W.; KONTOGEORGIS, G.M. Approach to Improve Speed of Sound Calculation within PC-SAFT Framework. *Ind. Eng. Chem. Res.*, v. 51, p. 14903–14914, 2012.

MATTEDI, S; TAVARES, F.W.; CASTIER, M. Group contribution equation of state based on the lattice fluid theory Alkane–alkanol systems, *Fluid Phase Equilibria*, v. 142, p. 33–54, 1998.

NIST Chemistry Webbook. http://webbook.nist.gov/chemistry (acessado em janeiro de 2014).

PAREDES, M.L.L.; CARDOSO, A.S.; MATTEDI, S.; TAVARES, F.W.; CASTIER, M. Equação de Estado para Fluidos Polares Polissegmentados. *Anais do 10^o Congresso Brasileiro de Engenharia Química*, São Paulo, pp. 121-126, 1994.

PAREDES, M.L.L.; REIS, R.A.; SILVA, A.A.; RIBEIRO, M.H.A.; XIMANGO, P.B. Densities, sound velocities, and refractive indexes of (tetralin + n-decane) and thermodynamic modeling by Prigogine–Flory–Patterson model. *J. Chem. Thermodynamics*, v. 45, p.35–42, 2012.

SANDLER, S.I. The Generalized van der Waals Partition Function. I. Basic Theory. *Fluid Phase Equilibria*, v. 19, p. 233-257, 1985.