

OTIMIZAÇÃO E ANÁLISE TÉCNICO-ECONÔMICA SIMPLIFICADA DA INJEÇÃO DE VAPOR E SOLVENTE EM RESERVATÓRIO DE ÓLEO PESADO

E. R. V. P. GALVÃO¹, M. A. F. RODRIGUES¹

RESUMO – Dentre os métodos térmicos utilizados para a recuperação de óleos pesados, a Injeção Contínua de Vapor tem se constituído como uma das principais alternativas economicamente viáveis. Para aumentar a eficiência deste método, uma alternativa cada vez mais utilizada tem sido a adição de solventes ao vapor injetado. Neste trabalho, foi realizado um estudo numérico do método proposto, onde se verificou a influência de alguns parâmetros operacionais sobre a recuperação de óleo. As simulações foram realizadas no módulo STARS, da CMG. Através de Superfícies de Resposta, foi possível estudar as interações entre os parâmetros. A viabilidade econômica do projeto foi analisada em termos de Valor Presente Líquido. A adição de solventes ao vapor injetado incrementou a recuperação de óleo. Menores volumes de água fria equivalente e uma menor quantidade de energia consumida por volume de óleo produzido foram requeridos para se obter as mesmas recuperações de óleo dos modelos que só injetaram vapor.

1. INTRODUÇÃO

Uma porção significativa das reservas de hidrocarbonetos atualmente existentes no mundo é formada por óleos pesados. Além disso, vários campos que apresentam esse tipo de óleo são maduros e, portanto, impõem grandes desafios para a indústria, como o declínio da produção de óleo, manuseio de grandes volumes de água para injeção, aumento da produção de água etc. Apesar desses desafios, a exploração e o desenvolvimento de novas reservas de óleo pesado bem como a melhoria das condições operacionais e a revitalização de alguns campos maduros continuam sendo viáveis e competitivas (Galvão, 2012).

Dentre os métodos térmicos utilizados para a recuperação desses recursos, a Injeção Contínua de Vapor tem se constituído como uma das principais alternativas economicamente viáveis. O calor latente transportado pelo vapor aquece o óleo do reservatório, reduzindo sua viscosidade e facilitando a produção.

O deslocamento no caso de injeções imiscíveis, como a injeção de vapor, não é completamente efetivo, mas o fluido do reservatório pode ser deslocado de uma maneira mais eficiente por outro fluido que seja miscível nele. É nesse ponto onde a injeção de solvente assume um papel significativo na recuperação do óleo pesado. Os solventes são hidrocarbonetos leves que têm a propriedade de

¹ Universidade Federal do Rio Grande do Norte, Departamento de Engenharia de Petróleo E-mail para contato: edneyrafael@ig.com.br

reduzir as tensões interfaciais e facilitar a produção do óleo.

Nas técnicas de recuperação avançada baseadas em solvente, vários mecanismos influenciam a taxa de recuperação de óleo, como a transferência de massa, as forças viscosas e a drenagem gravitacional. Ao se difundir, o solvente reduz a viscosidade e as tensões interfaciais que retardam e reduzem a recuperação do óleo. A mistura óleo-solvente flui então com maior facilidade e é recuperada nos poços produtores (Galvão, 2012).

2. MATERIAIS E MÉTODOS

O modelo de simulação utilizado corresponde a um reservatório de óleo com dimensões 100 m x 100 m x 35 m, disposto em um Sistema de Coordenadas Cartesiano (direções x, y e z). Para reduzir o tempo de simulação e considerando a simetria do sistema, o esquema de injeção escolhido foi o um quarto de "five-spot" invertido, representado por dois poços: um injetor e outro produtor, localizados em uma das diagonais do reservatório. Há também uma zona de água de 9 m de espessura.

A Figura 1 mostra, além da saturação inicial de óleo, as dimensões do modelo, a localização dos poços e o refinamento adotado, que resultou numa malha de 8800 blocos.

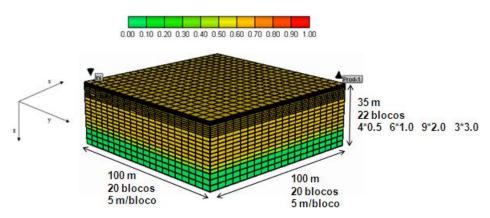


Figura 1 – Saturação inicial de óleo, dimensões do modelo físico, localização dos poços e refinamento da malha.

Neste trabalho, foram utilizados modelos semi-sintéticos com dados de reservatório que podem ser extrapolados para situações de aplicações práticas na Bacia Potiguar. A Tabela 1 mostra as principais propriedades de reservatório utilizadas nos arquivos de dados, enquanto que a Tabela 2 mostra algumas condições operacionais mantidas fixas durante as análises realizadas. A produção dos fluidos foi analisada entre as datas 01/01/2000 e 29/12/2009. No sentido topo-base do reservatório, o poço injetor foi completado da décima terceira à décima sétima camada. A completação do poço produtor foi realizada na zona de óleo.

Tabela 1 – Propriedades de reservatório utilizadas nos arquivos de dados

Propriedade do Reservatório	Valor
Profundidade (m)	200
Porosidade (%)	30
Permeabilidade Horizontal (mD)	1000
Permeabilidade Vertical (mD)	100
Compressibilidade Efetiva da Rocha (1/Pa)	0,00000044
Condutividade Térmica da Rocha (J / m-s-K)	1,7
Capacidade Calorífica Volumétrica da Rocha (J / m³-K)	66465
Temperatura Inicial do Reservatório (°C)	37,8
Distância do Contato Água-Óleo em	26
Relação ao Topo do Reservatório (m)	20

Tabela 2 – Condições operacionais fixas

Condição Operacional Fixa	Valor
Temperatura de Injeção do Vapor (°C)	288
Título do Vapor (%)	55
Pressão Máxima no Poço Injetor (kPa)	7200
Pressão Mínima no Poço Produtor (kPa)	197
Tempo de Análise (anos)	10

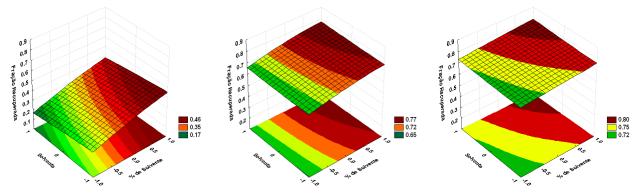
Para o presente estudo, foi utilizado um sistema multicomponente de fluido. O modelo utilizado corresponde a um óleo com características semelhantes aos que são encontrados em alguns reservatórios da Bacia Potiguar. O grau API do óleo é 16 e sua viscosidade é de 1120 cp@38°C. De acordo com a classificação da ANP, trata-se de um óleo pesado $(10 \le ^\circ API < 22)$ (Queiroz, 2006).

Para analisar as respostas de interesse com base nas diferentes interações entre os parâmetros operacionais escolhidos, foi realizado um planejamento fatorial de três níveis, resultando num total de vinte e sete simulações. Os solventes escolhidos foram o *n*-pentano e o *n*-nonano, injetados no reservatório à mesma temperatura do vapor (288°C). Também foi analisada uma mistura equivolumétrica dos dois tipos de solvente, ou seja, 50% do volume de solvente injetado correspondente a *n*-pentano e os outros 50% a *n*-nonano.

Os níveis mínimos (-1), intermediários (0) e máximos (+1) bem como a nomenclatura utilizada para esses parâmetros constam na Tabela 3.

TD 1 1 0	T . 1	1 /11		1 .	1	A .	
Tabela 3 –	Intervalo	de análi	se e nom	enclafura	dos	narametros	operacionais
I abcia 3	mitter varo	ac anan		ciiciatura	uos	parametros	operacionais

Parâmetro	Valor Mínimo (-1)	Valor Intermediário (0)	Valor Máximo (+1)
Vazão de Injeção de Vapor (m³/dia) - "Qvinj"	20	35	50
Volume de Solvente Injetado / Volume de Vapor Injetado (%) - "% de Solvente"	5	10	15
Solvente - "Solvente"	<i>n</i> -Pentano	<i>n</i> -Pentano (50% Vol.) + <i>n</i> -Nonano (50% Vol.)	<i>n</i> -Nonano


O Método do Valor Presente Líquido também chamado Método do Valor Atual Líquido tem como finalidade determinar um valor no instante considerado inicial, a partir de um fluxo de caixa formado de uma série de receitas e dispêndios (Hirschfeld, 2000). Para o cálculo do VPL através da Equação 1, foram considerados, no fluxo de caixa, o preço de venda do óleo produzido, o custo de geração do vapor, o custo de produção do óleo e o preço de compra dos solventes analisados. Não foram considerados os custos relacionados ao capital inicial.

$$VPL = \sum_{t=1}^{n} \frac{R_c}{(1+i)^t}$$
 (1)

Onde i é a taxa de desconto, t é o tempo, em anos, e R_c o fluxo de caixa anual, em R\$.

3. RESULTADOS E DISCUSSÃO

As Figuras 2, 3 e 4 mostram, respectivamente, as superfícies de resposta para as vazões de 20 m³/dia, 35 m³/dia e 50 m³/dia de vapor injetado. Percebe-se que, nos três casos, as maiores frações recuperadas de óleo (sem contabilizar o solvente produzido) foram obtidas para as combinações que apresentaram os maiores volumes de solvente injetado ("% de Solvente").

Figuras 2, 3 e 4 – Interações entre a porcentagem de solvente injetado e o tipo de solvente. Da esq. para a dir.: 20 m³/dia, 35 m³/dia e 50 m³/dia de vapor injetado.

O fato interessante é que, na Figura 2, as maiores recuperações foram obtidas para as combinações entre elevadas porcentagens de solvente injetado ("% de Solvente") com o tipo de solvente ("Solvente") mais leve, enquanto que, na Figura 4, os melhores resultados foram obtidos para as combinações entre elevadas porcentagens de solvente injetado ("% de Solvente") com o tipo de solvente ("Solvente") mais pesado.

A questão é que o método de coinjeção proposto consiste na combinação de um método térmico (injeção de vapor) com um método miscível (injeção de solvente). Para a vazão de 20 m³/dia de vapor injetado, o menor aquecimento do reservatório (em relação à vazão de 50 m³/dia) foi compensado pelo efeito miscível do *n*-C5 que, possuindo menor viscosidade do que o *n*-C9, apresenta maior mobilidade para fluir no meio poroso e diluir o óleo pesado.

O termo *água fria equivalente* refere-se ao volume de água utilizado para a geração do vapor. A Figura 5 mostra as curvas de fração recuperada de óleo (sem contabilizar o solvente produzido) *versus* volume poroso injetado de água fria equivalente (VPIW) para modelos que injetam diferentes percentuais de *n*-C5 (0%, 5%, 10% e 15%), mantendo-se uma vazão contínua de 20 m³/dia de vapor. Percebe-se, por exemplo, que, para alcançar uma fração recuperada em torno de 0,08, o modelo que só injeta vapor precisou de aproximadamente 0,90 VPIW, enquanto que o "Modelo 15% Solvente" precisou de apenas 0,48 VPIW. Considerando o volume poroso da zona de óleo do reservatório em questão (78.000 m³), isso representa uma economia de 32.760 m³ (≈ 206.000 bbl) de água para se obter a mesma fração recuperada em torno de 0,08.

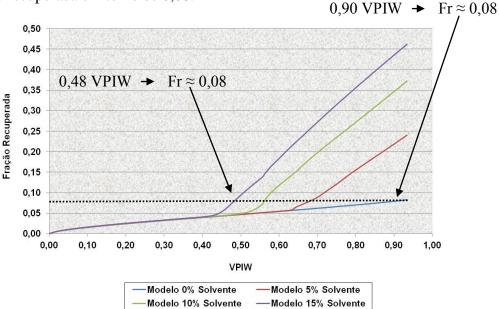


Figura 5 – Fração recuperada de óleo (sem contabilizar o solvente produzido) *versus* volume poroso injetado de água fria equivalente (VPIW). 20 m³/dia de vapor injetado.

Os solventes, em geral, são caros. Portanto, buscando favorecer a viabilidade do método a partir da redução do volume de solvente injetado, *Galvão* (2012) realizou um estudo da interrupção da

injeção de solvente para o "Modelo 15% Solvente", mantendo-se a injeção contínua de 20 m³/dia. Verificou-se, no referido estudo, que a injeção de solvente até o sexto ano (modelo "Int6a") já foi suficiente para atingir o mesmo patamar de recuperação final do "Modelo 15% Solvente".

A Figura 6 mostra a razão acumulada entre o calor injetado no reservatório e o volume de óleo produzido (sem contabilizar o solvente) *versus* tempo para os modelos "0% Solvente", "15% Solvente" e "Int6a". Observa-se que, nos quatro primeiros anos, as curvas praticamente coincidiram. Ao final do tempo de análise, os modelos "15% Solvente" e "Int6a" injetaram cerca de $6.0 \times 10^9 J$ de calor para cada m 3 _{STD} de óleo produzido, enquanto que o "Modelo 0% Solvente" injetou em torno de $3.3 \times 10^{10} J$ por m 3 _{STD} de óleo produzido, ou seja, uma quantidade mais de cinco vezes maior. Tratase de um resultado importante e que pode ter reflexos sob os pontos de vista ambiental e econômico.

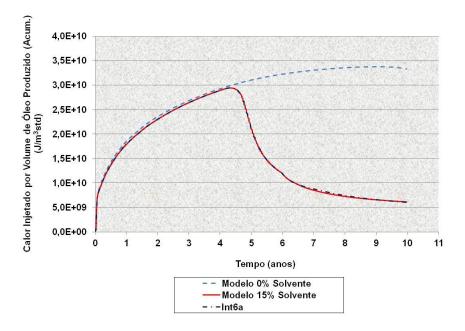


Figura 6 – Razão acumulada entre o calor injetado no reservatório e o volume de óleo produzido (sem contabilizar o solvente).

Uma análise técnico-econômica simplificada foi realizada para o método proposto. Foi considerada a cotação do petróleo WTI ("West Texas Intermediate") de US\$ 83,49/STB (G1 Economia, 2012), com o dólar cotado a R\$ 2,037. Alguns valores, como o preço do óleo e o custo de produção, foram mantidos fixos durante todo o tempo de projeto. Por se tratar de dados de mercado, optou-se por não fazer projeções. Foram analisadas diversas vazões de injeção de vapor (de 15 m³/dia a 80 m³/dia), adicionando-se os solventes *n*-C5 ou *n*-C9 e mantendo-se o percentual de solvente injetado de 15% sobre o volume de vapor. A Tabela 4 mostra as especificações do cenário econômico utilizado.

Tabela 4 – Cenário utilizado na análise técnico-econômica do método proposto

Taxa de desconto (%)	10
Fator de produção líquido do óleo (adimensional)	0,90
Custo de geração do vapor em relação ao preço do petróleo (adimensional)	0,10
Preço do n-C5 injetado (R\$/STB)	1,2 x (Preço do petróleo)
Preço do n-C9 injetado (R\$/STB)	1,0 x (Preço do petróleo)

A Figura 7 mostra as curvas de VPL máximo *versus* vazão de injeção de vapor para os solventes *n*-C5 e *n*-C9. Foram utilizados os picos de VPL obtidos e as respectivas vazões de injeção de vapor. Observa-se, através das regiões circuladas, que há, para cada uma das duas curvas, um ponto máximo, referente à vazão "ótima" de injeção. Para o caso do *n*-C5, esse ponto corresponde a uma vazão de 50 m³/dia de vapor e 15% de *n*-C5, para a qual foi obtido um VPL_{MÁX} em torno de R\$ 8.400.000,00. Já para o caso do *n*-C9, esse ponto corresponde a uma vazão de 70 m³/dia de vapor e 15% de *n*-C9, para a qual foi obtido um VPL_{MÁX} em torno de R\$ 10.100.000,00.

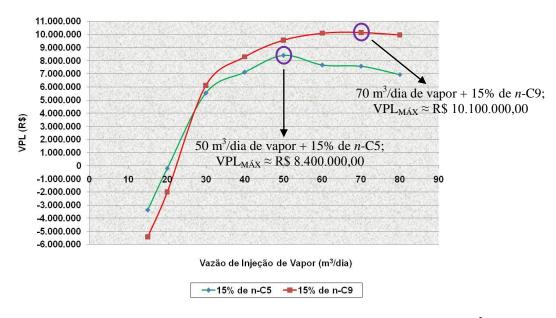


Figura 7 – Valor presente líquido máximo (VPL_{MÁX}) versus vazão de injeção de vapor (m³/dia).

4. CONCLUSÕES

As maiores frações recuperadas de óleo (sem contabilizar o solvente produzido) foram obtidas para as combinações que apresentaram os maiores volumes de solvente injetado; com a adição de solventes, menores volumes de água fria equivalente foram requeridos para se obter as mesmas frações recuperadas dos modelos que só injetaram vapor; considerando as características do reservatório em questão, a adição do solvente ao vapor reduziu em mais de cinco vezes a razão entre a quantidade de calor injetado no reservatório e o volume de óleo produzido; a máxima rentabilidade, em termos de VPL, foi obtida para uma vazão de 70 m³/dia de vapor e 15% de *n*-C9, considerando o esquema de injeção utilizado.

5. AGRADECIMENTOS

Os autores agradecem ao PRH-ANP 43, ao PRH-PB 221, à "Computer Modelling Group" (CMG) e ao Laboratório de Estudos Avançados em Petróleo (LEAP/UFRN) pelo suporte fornecido para a execução deste trabalho.

6. REFERÊNCIAS

- GALVÃO, E. R. V. P. Análise paramétrica da injeção de vapor e solvente em reservatórios de óleo pesado. 2012. 196f. Tese (Doutorado em Ciência e Engenharia de Petróleo) Centro de Tecnologia, Programa de Pós-Graduação em Ciência e Engenharia de Petróleo, Universidade Federal do Rio Grande do Norte, Natal.
- G1 Economia. Notícias e Cotações. Disponível em <u>g1.globo.com/economia/mercados</u>. Acessado em 01 jun., 2012.
- QUEIROZ, G. O. Otimização da injeção cíclica de vapor em reservatórios de óleo pesado. 2006. 119f. Dissertação (Mestrado em Engenharia Química) Centro de Tecnologia, Departamento de Engenharia Química, Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal.

HIRSCHFELD, H. Engenharia econômica e análise de custos. 7. Ed. São Paulo: Atlas, 2000.