

IMOBILIZAÇÃO DE INULINASE COMERCIAL EM NANOTUBOS DE CARBONO FUNCIONALIZADOS

T. B. GARLET¹, C. T. WEBER¹, E. L. FOLETTO¹, S. L. JAHN¹, M. A. MAZUTTI¹, R. C. KUHN¹

¹ Universidade Federal de Santa Maria, Departamento de Engenharia Química E-mail para contato: raquelckuhn@yahoo.com.br

RESUMO – O presente trabalho teve como objetivo principal definir uma estratégia para a imobilização de inulinase comercial em nanotubos de carbono funcionalizados. No delineamento composto central rotacional (DCCR) a concentração de enzima (0,87% e 1,72% (v/v)) e a razão adsorvente:adsorbato (1:175 e 1:460) foram as variáveis independentes. As cinéticas foram mantidas até equilíbrio, sendo este atingido aos seis minutos em todos os ensaios. De acordo com os resultados do DCCR a variável concentração de enzima apresentou um efeito negativo sobre a imobilização da inulinase, a razão adsorvente:adsorbato e a interação entre as duas variáveis apresentaram efeitos positivos (p<0,10). A enzima imobilizada manteve praticamente 100% da atividade relativa a 50 °C durante 240 minutos. Portanto, os nanotubos avaliados são considerados adsorventes promissores, devido ao rápido equilíbrio de adsorção, sendo assim definida uma estratégia de imobilização de enzimas.

1. INTRODUÇÃO

A imobilização consiste no confinamento da enzima em um suporte sólido para posterior reutilização do biocatalisador, é vantajosa para aplicação industrial devido a facilidade de separação do meio de reação e o reutilização da mesma, o baixo custo do produto e a possibilidade de aumento da estabilidade (Husain, 2010).

As inulinases são enzimas potencialmente utilizadas na produção de xaropes de frutose pela hidrólise enzimática da inulina com rendimentos de até 95% (Ettalibi e Baratti, 2001). Também possuem aplicação na produção de frutooligossacarídeos, compostos com propriedades funcionais e nutricionais com aplicação em dietas de baixas calorias, estimulação das bactérias benéficas do organismo, funcionando como fibras dietéticas quando aplicada aos alimentos (Silva- Santisteban e Maugeri, 2005).

Nanomateriais podem servir como um eficiente suporte para imobilização de enzimas, pois oferecem características ideais que são determinantes na eficiência do biocatalisador, incluindo a superfície de área e a resistência a transferência de massa. Os nanomateriais têm sido extensivamente utilizados para imobilização de enzimas, neste caso, as nanopartículas podem proporcionar uma maior superfície de área para as enzimas, o que conduz a uma maior quantidade de enzima por quantidade de massa de partícula (Ji et al., 2010).

Entre os vários materiais utilizados como nanoestruturas, estão as nanopartículas, nanofibras e nanotubos, os nanotubos de carbono (CNTs) têm sido foco de muitas pesquisas (Feng e Ji, 2011). Os CNTs são compostos de grafite em forma de cilindro com comprimentos de micrômetros, e diâmetros de até 100 nm (Tasis et al., 2006). Apresentam uma afinidade natural por diversos tipos de enzima, onde a adsorção é espontânea quando a enzima entra em contato com este material (Feng e Ji, 2011). Os nanotubos de carbono podem promover a imobilização de uma enzima específica, sendo o principal desafio promover a fixação da enzima, mantendo sua atividade e função mais próximas de seu estado nativo (Pedrosa et al., 2010). As vantagens dos métodos de imobilização de enzimas por adsorção neste material são claros, dentre eles a manutenção da estrutura da proteína e as propriedades dos CNTs. Entretanto, a durabilidade é uma preocupação da aplicação dos métodos de adsorção, visto que a ligação covalente das enzimas pode resultar em alta estabilidade e reuso da enzima (Feng e Ji, 2011).

Em vista do que foi exposto, o objetivo deste trabalho foi definir uma estratégia de imobilização da inulinase em nanotubos de carbono funcionalizados, para isto foram estudadas as variáveis que influenciaram na imobilização da inulinase, dentre elas, a concentração de enzima e a razão adsorvente:adsorbato através de metodologia de planejamento experimental. Na melhor condição de imobilização foi avaliada a estabilidade a diferentes temperaturas.

2. MATERIAL E MÉTODOS

2.1. MATERIAL

A inulinase comercial foi adquirida da Sigma–Aldrich obtida de *Aspergillus niger*. Os nanotubos de carbono funcionalizados (CNT-COOH) foram adquiridos da NanoAmor (EUA) sendo utilizados como adsorvente. Os demais reagentes utilizados foram de grau analítico.

2.2. ENSAIOS DE ADSORÇÃO

Foram realizadas cinéticas de adsorção da solução de inulinase com os nanotubos de carbono funcionalizados. Sendo pesados em erlenmeyers 0,025 g de nanotubos de carbono sendo adicionado solução de inulinase em tampão acetato 0,1 M (pH 4,8) conforme delineamento composto central rotacional (Tabela 1). As cinéticas foram realizadas em agitador rotativo (shaker) a 25 0 C até o equilíbrio. A capacidade de adsorção da solução de inulinase (Q_{t}) no nanotubo de carbono no tempo (t) foi calculada de acordo com a Equação 1.

$$Q_t = \frac{(A_0 - A_t)V}{m} \tag{1}$$

onde A_0 (U/mL) é a atividade inicial da solução de inulinase, A_t (U/mL) é a atividade da solução no tempo t, V (mL) é o volume da solução de inulinase, e m (g) é a massa de nanotubo de carbono.

2.3. DELINEAMENTO COMPOSTO CENTRAL ROTACIONAL

Para avaliação das cinéticas de adsorção foi delineado um planejamento experimental completo (DCCR) com três pontos centrais, onde as variáveis independentes foram a concentração de enzima e a razão adsorvente:adsorbato, conforme descrito na Tabela 1.

Tabela 1 – Variáveis reais e codificadas do delineamento composto central rotacional (DCCR)

	-1,41	-1	0	+1	+1,41
Concentração enzima (%)	0,87	1	1,3	1,6	1,7
Razão adsorvente:adsorbato	1:175	1:200	1:300	1:400	1:460

2.4. TERMOESTABILIDADE DA ENZIMA

Os ensaios avaliando a termoestabilidade da enzima foram realizados na melhor condição definida no DCCR. A termoestabilidade da enzima imobilizada foi determinada a diferentes temperaturas (30, 50 e 70 0 C) durante 240 minutos. A atividade da enzima foi avaliada a cada 30 minutos sendo definida como atividade relativa em relação a atividade inicial.

2.5. DETERMINAÇÃO DA ATIVIDADE ENZIMÁTICA

A atividade de enzima foi medida através da incubação de 0,5 mL da enzima apropriadamente diluída em 4,5 mL de sacarose (2% p/v) em tampão acetato (0,1 M pH 4,8) a 50 °C. Os açúcares redutores foram quantificados através do método 3,5-DNS (Miller, 1959). Uma unidade de enzima foi definida como a quantidade de enzima necessária para liberar 1 µmol de açúcares redutores por minuto em condições padrão.

3. RESULTADOS E DISCUSSÃO

As cinéticas de adsorção foram realizadas até atingirem o equilíbrio da reação, na Tabela 2 estão apresentados os resultados para capacidade de adsorção, obtidos aos seis minutos de reação onde todas as condições avaliadas haviam atingido o equilíbrio, sendo este o tempo considerado para imobilização da inulinase.

Tabela 2 – Valores codificados e reais (entre parênteses) para as variáveis do DCCR e resultados da inulinase imobilizada

Ensaios	Concentração	Razão	Imobilização
	enzima (%)	adsorvente:adsorbato	(U/g)
1	-1 (1)	-1 (1:200)	49570,90
2	1 (1,6)	-1 (1:200)	26665,60
3	-1 (1)	1 (1:400)	45774,44
4	1 (1,6)	1 (1:400)	45286,32
5	-1,41 (0,87)	0 (1:300)	39331,28
6	1,41 (1,7)	0 (1:300)	30784,64
7	0 (1,3)	-1,41 (1:175)	24603,97
8	0 (1,3)	1,41 (1:460)	51047,76
9	0 (1,3)	0 (1:300)	38715,53
10	0 (1,3)	0 (1:300)	40217,43
11	0 (1,3)	0 (1:300)	40175,71

Através dos resultados obtidos na Tabela 2, foram avaliados os efeitos das variáveis estudadas, onde através da Figura 1, são observados que a concentração de enzima teve um efeito negativo sobre a resposta e as variáveis razão adsorvente:adsorbato e a interação entre as duas variáveis tiveram efeitos positivos (p<0,10). Ou seja, com o aumento da concentração de enzima menor a capacidade de adsorção da enzima no material, o contrário é observado em relação a razão adsorvente:adsorbato quanto maior a razão melhor a capacidade de adsorção da enzima.

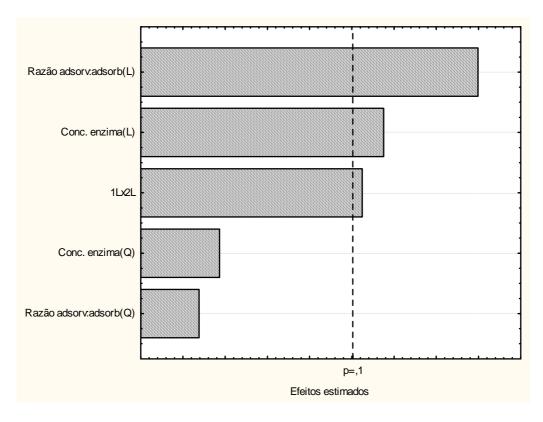


Figura 1 – Efeitos estimados para as variáveis avaliadas na imobilização da inulinase.

Os efeitos foram relacionados aos termos de um modelo quadrático apresentado na Eq. 2. A Eq. 2 apresenta os termos significativos (p<0,10) em relação a capacidade de adsorção da inulinase.

Adsorção
$$(U/g) = 39681,47 - 8887,48.E + 13066,38.R + 11208,59.E.R$$
 (2)

Onde E = concentração de enzima (%); R = razão adsorvente:adsorbato.

O modelo apresentado foi estatisticamente validado pela análise de variância (ANOVA) (Tabela 3). O valor do $F_{calculado}$ foi três vezes superior ao valor tabelado e o modelo apresentou um coeficiente de regressão (r^2) de 0,81.

Através da curva de contorno (Figura 2) podem ser observados que as melhores respostas foram obtidas nas menores razões de adsorvente:adsorbato e concentração de enzima, condições estudadas no ensaio 1, e também nas maiores concentrações adsorvente:adsorbato e concentrações intermediárias de enzima, ensaio 8.

Tabela 3 –	Análise o	de variância	(ANOVA)

	Soma dos	Graus de	Quadrado	F _{calculado}
	quadrados	liberdade	médio	
Regressão	623581895	3	207860631,7	9,848797
Resíduos	147736259	7	21105179,92	
Total	771318154	10		

 $F_{3;7;0,1} = 3,07$

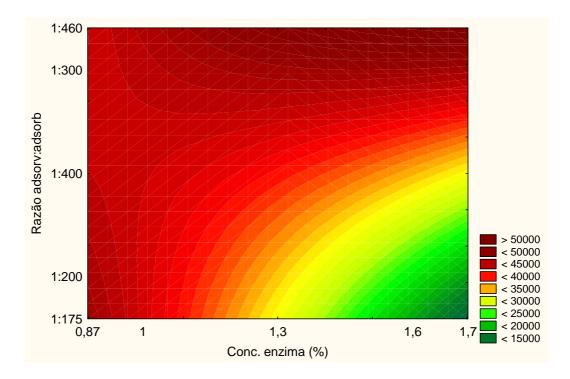


Figura 2- Curva de contorno para a resposta capacidade de imobilização da enzima.

Na melhor condição do planejamento experimental, a termoestabilidade da enzima foi avaliada em diferentes temperaturas, dados apresentados na Figura 3, onde podem ser observados que a 50 0 C a enzima manteve sua atividade inicial por aproximadamente 240 minutos, o mesmo não foi observado para as temperaturas de 30 e 70 0 C, onde após 240 minutos a atividade relativa da enzima era cerca de 45 e 47%, respectivamente. Resultados semelhantes para a melhor temperatura foram encontrados por outros autores, Yewale *et al.* (2013); Danial *et al.* (2010) estudaram diferentes temperaturas na estabilidade da inulinase imobilizada e encontraram a temperatura de 60 0 C como a que manteve quase 100% da atividade relativa durante 120 minutos de reação.

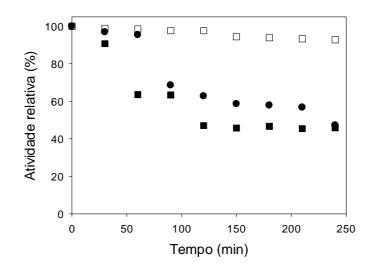


Figura 3 – Termoestabilidade da inulinase ((\blacksquare) 30 0 C, (\square) 50 0 C e (\bullet) 70 0 C).

4. CONCLUSÃO

No presente trabalho foram definidas as melhores condições para a imobilização de inulinase comercial em nanotubos de carbono funcionalizados através de metodologia de planejamento experimental. Através da curva de contorno do planejamento experimental foram definidas as melhores condições para a adsorção da enzima, sendo nas menores concentrações de enzima e maiores razões de adsorvente:adsorbato. A enzima manteve praticamente 100% de sua atividade relativa a 50 °C durante 240 minutos, sendo esta a melhor condição para processos envolvendo a enzima imobilizada dentre as temperaturas estudadas. Com os resultados foi possível definir uma metodologia para imobilização de inulinase em nanotubos com potencial para aplicação em larga escala.

5. REFERÊNCIAS

DANIAL, E. N.; ELNASHAR, M. M. M.; AWAD, G. E. A. Immobilized inulinase on grafted alginate beads prepared by the one-step and the two-steps methods. *Ind. Eng. Chem. Res.*, v. 49, p. 3120-3125, 2010.

ETTALIBI, M.; BARATTI, J. C. Sucrose hydrolysis by thermostable immobilized inulinases from *Aspergillus ficcum*. *Enzyme Microbioly Technol*, v. 28, p. 596-601, 2001.

FENG, W.; J.I., P. Enzymes immobilized on carbon nanotubes. *Biotechnol Advances*, v. 29, p. 889–895, 2011.

HUSAIN, Q. β. Galactosidase and their potential applications. *Critical Rev Biotechnol*, v. 30, p. 41–62, 2010.

- JI, P., TAN, H., XU, X., FENG, W. Lipase covalently attached to multi-walled carbon nanotubes as an efficient catalyst in organic solvent. *AIChE J*, v. 56, p. 3005–11, 2010.
- MILLER, G. L. Use of dinitrosalisylic acid reagent for determination of reducing sugar. *Analytical Chem*, v. 31, p. 426-428, 1959.
- PEDROSA, V.A.; PALIWAL, S.; BALASUBRAMANIAN, S.; NEPAL, D.; DAVIS, V.; WILD, J.; RAMANCULO, E.; SIMONIAN, A. Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. *Colloids and Surfaces B: Biointerfaces*, v. 77, p. 69–74, 2010.
- SILVA, B.O.Y.; MAUGERI, F. Agitation, aeration and shear stress as key factors in inulinase production by *Kluyveromyces marxianus*. *Enzyme Microbioly Technol*, v. 36, p. 717-724, 2005.
- TASIS, D.; TAGMATARCHIS, N.; BIANCO, A.; PRATO, M. Chemistry of carbon nanotubes. *Chem Ver*, v. 106, p. 1105–36, 2006.
- YEWALE, T.; SINGHAL, R. S.; VAIDJA, A. A. Immobilization of inulinase from *Aspergillus niger* NCIM 945 on chitosan and its application in continuous inulin hydrolysis. *Biocatal and Agric Biotech*, 2: 96-101, 2013.