

ESTUDO EXPERIMENTAL DA RELAÇÃO DA DESSULFURAÇÃO EM LEITO FLUIDIZADO BORBULHANTE COM AS CONDIÇÕES FLUIDODINÂMICAS

¹²G.M. FAÉ GOMES, ¹²L. DALLA ZEN, ¹C. PHILIPPSEN, ¹E.K. BARD, ¹G. SOUZA

¹ Fundação de Ciência e Tecnologia do Rio Grande do Sul (CIENTEC), Departamento de Engenharia de Processos

² Universidade do Vale do Rio dos Sinos (UNISINOS), Escola de Engenharia E-mail para contato: gabriel-gomes@cientec.rs.gov.br

RESUMO – Algumas questões operacionais que envolvem a dessulfuração em leito fluidizado ainda necessitam do desenvolvimento de um maior conhecimento. Dentre elas, destaca-se a relação existente entre as características fluidodinâmicas de operação com a conversão do SO₂. Para tanto, este trabalho utilizou uma planta piloto de 250 kW_t em leito fluidizado borbulhante para a análise da conversão do SO₂ a CaSO₄ com dois distintos tipos de carvão mineral. Foi realizada uma análise estequiométrica e fluidodinâmica do processo a partir de dados obtidos da emissão de SO₂ nos gases de combustão. A % de conversão de SO₂ chegou a 70,5% para um carvão utilizado e 59,5% para outro carvão. O maior teor de enxofre de um dos carvões mostrou influência na extensão da reação, especificamente no número de mols de SO₂ consumidos por hora. A análise mineralógica mostrou que ocorre uma das rotas descritas na literatura com formação intermediária de CaSO₃ por duas reações em série e a elutriação das cinzas e do CaO mostraram distintas tendências.

1. INTRODUÇÃO

A dessulfuração *in situ*, em leito fluidizado borbulhante, pela reação do CaO presente no calcário com o SO_2 gerado em reações de combustão, está longe de ser estequiométrica, utilizando excessos de Ca em base molar de 200 a 300%. Consequentemente, tal necessidade de excesso vem a ser uma das principais limitações desta tecnologia (Anthony a Granatstein, 2001).

Isto ocorre porque a formação do CaSO₄ gera uma casca ao redor do CaO não reagido, de maior volume molar, que reduz a sua fragmentação (Scala *et al.*, 2011). Algumas condições operacionais, como influência da temperatura e excesso de oxigênio já foram extensivamente descritas na literatura tendo como base alguns autores específicos (Yates, 1983; Ulerich *et al.*, 1980). No entanto, relações entre as condições fluidodinâmicas – especificamente a elutriação – e a dessulfuração ainda possuem espaço para maior investigação, uma vez que o carregamento de sólidos para fora do sistema é fortemente afetado pela velocidade do gás e finos no leito (Kunii e Levenspiel, 1991).

Alguns autores têm estudado a influência das condições operacionais na dessulfuração, como

Tarelho *et al.* (2005), que utilizaram dois tipos de carvão e uma razão molar Ca/S de 3,5, além de excesso de ar de 10, 25 e 50%. Apesar de alguma influência do excesso de ar, a alimentação de ar em estágio mostrou muito maior influência, o que propiciou maior conversão. Montanagro *et al.* (2010) investigaram a influência da temperatura no atrito e fragmentação de dois tipos de calcário na dessulfuração em um reator de leito fluidizado. A elutriação ocorreu mais fortemente durante a sulfatação e, após a formação da casca de CaSO₄, o atrito passou a dominar no sistema. Ainda, Scala *et al.* (2011) descreveram a fragmentação de dois tipos de calcário e Hlincik e Buryan (2013) descreveram a performance de diferentes tipos de calcário, com diferentes teores de CaO.

Para este trabalho, foi utilizado um tipo de calcário e dois tipos de carvão mineral, todos da Região Sul do Brasil, para a dessulfuração em planta piloto com reator de 250 kW_t de leito fluidizado borbulhante. As conversões de SO₂ foram obtidas para diferentes razões molares Ca/S empregadas – 1,5, 2,0 e 2,5. A análise dos resultados foi realizada pela obtenção dos rendimentos, extensão da reação, composição das cinzas e obtenção da elutriação das cinzas e CaO. Com isso, uma relação da estequiometria das reações e das condições fluidodinâmicas foi possível de ser desenvolvida.

2. METODOLOGIA

1.1 Materiais

Segue, na Tabela 1, a caracterização dos carvões utilizados como combustíveis. Os carvões foram, ao longo do texto, chamados de "Carvão A" e "Carvão B". O calcário utilizado possui, quanto aos óxidos majoritários, 24,5% CaO, 20,0% MgO e 23,8% SiO₂, além da perda ao fogo de 28,0% e Diâmetro de Sauter de 142,2 µm.

Carvão	Α	В	
C (%)	35,90	36,59	
H (%)	2,78	2,57	
S (%)	1,33	1,71	
N (%)	0,63	1,17	
O (%)	5,16	7,79	
Cinzas (%)	45,67	40,17	
PCI (kcal/kg)	3813,33	3746,35	

Tabela 1 - Caracterização dos combustíveis.

1.2 Planta piloto

A Figura 1 mostra o esquema da planta piloto de 0,25 MW_t utilizada nas operações de combustão sem e com dessulfuração.

A planta consiste da alimentação de combustível e calcário, armazenados em silos (1) e (3), no reator em leito fluidizado borbulhante (6), por roscas dosadoras (2) e (4). O ar comburente é alimentado a partir de um ventilador (20). Os gases gerados na combustão passam pelo Ciclone 1

(7), onde boa parte das cinzas é abatida e armazenada no Silo 1 (8). Os gases ainda passam pelo Ciclone 2 (11) antes de sair pela chaminé (12).

Figura 1 – Esquema da planta piloto em leito fluidizado borbulhante.

1.3 Análise estequiométrica

Para a dessulfuração, duas rotas, usualmente descritas na literatura, foram consideradas para a reação do CaO do calcário com o SO₂ gerado na combustão. A primeira rota – Rota I – considera a formação intermediária de CaSO₃ e, posteriormente, a sua oxidação a CaSO₄ (Yates, 1983; Anthony e Granatstein, 2001). A segunda rota – Rota II – já considera a formação direta do CaSO₄ (Suyadal *et al.*, 2005).

<u>Extensão da reação</u>: A extensão da reação, ξ , denota o quanto da reação está ocorrendo e foi determinada pela Equação 1 (Himmenblau e Riggs, 2006):

$$\xi = \frac{SO_2(sai) - SO_2(entra)}{-1} \tag{1}$$

<u>% Conversão SO₂</u>: A Equação 2 mostra a expressão para a determinação da conversão do SO₂ gerado.

% Conversão
$$SO_2 = \frac{n_{i0SO_2} - n_{iSO_2}}{n_{i0SO_2}} x 100$$
 (2)

<u>Rendimento da dessulfuração</u>: Para a determinação do rendimento de CaSO₄, utilizou-se a definição do mesmo baseado na alimentação (Himmenblau e Riggs, 2006), sendo a quantidade obtida de produto desejado – CaSO₄ – dividida pela quantidade alimentada do reagente.

1.4 Elutriação

Foram determinadas as % Elutriação de Cinzas e % Elutriação CaO, sendo que a massa elutriada foi determinada pela massa depositada no Silo 1 (Figura 1).

3. RESULTADOS E DISCUSSÃO

3.1 Resultados da combustão, dessulfuração e caracterização das cinzas quanto aos óxidos

A Tabela 2 apresenta duas diferentes condições aplicadas para a combustão do Carvão A e Carvão B. Para cada carvão, foi utilizada uma velocidade superficial (U_s) distinta, de 0,9 m/s e 1,2 m/s, tendo a reação já em estado estacionário e as temperaturas abaixo (T04) e acima (T05) do leito fluidizado entre 850 e 870°C. Consequentemente, 4 condições distintas de processo foram obtidas: A1 e A2 para o Carvão A e B1 e B2 para o carvão B. A Tabela 3 já apresenta os resultados da dessulfuração para as duas velocidades superficiais empregadas e, para cada velocidade superficial, o uso três excessos de cálcio.

Tabela 2 Combustad em feito fididizado borbumante para o Carvao A e o Carvao B.					
Carvão	Α	Α	В	В	
Condição	A1	A2	B1	B2	
Razão Ar/Combustível	6,5	8,7	8,0	9,1	
U _s (m/s)	0,9	1,2	0,9	1,2	
T05 (°C)	860	855	860	870	
T04 (°C)	859	856	855	865	
SO ₂ (ppm)	1084,7	976,2	943,7	776,1	

Tabela 2 – Combustão em leito fluidizado borbulhante para o Carvão A e o Carvão B.

Como observado na Tabela 3, há uma diferença da conversão de SO₂ entre $U_s = 0.9$ m/s e $U_s = 1.2$ m/s, como esperado, de maneira a obter melhores condições para a menor velocidade superficial. Ao mesmo tempo, de maneira geral, o Carvão A mostrou melhores condições quanto à conversão de SO₂.

Condição	A3	A4	A5	A6	A7	A8
U _s (m/s)	$U_{\rm s} = 0.9 {\rm m/s}$		$U_{s} = 1,2 m/s$			
Razão Molar Ca/S	1,5	2,0	2,5	1,5	2,0	2,5
% Conversão SO ₂	52,5	62,5	70,5	44,7	45,7	60,9
Condição	B3	B4	B5	B6	B7	B8
% Conversão SO ₂	37,0	51,8	59,5	28,8	48,0	47,4

Tabela 3 – Dessulfuração do Carvão A para $U_s = 0.9$ m/s e 1,2 m/s.

3.2 Análise estequiométrica

Tendo em conta os resultados obtidos a partir das Tabelas 2 e 3, a Tabela 4 mostra o rendimento de $CaSO_4$ obtido em relação à alimentação de SO_2 e CaO. Ao mesmo tempo, a Tabela 4 também mostra a extensão da reação quanto ao número de mols de SO_2 consumidos.

Considerando os rendimentos de mol de $CaSO_4$ por mol de reagente, são observadas diferenças nas comparações A4 x A7 e B4 x B7. Para um mesmo tipo de carvão, o número de

mols de $CaSO_4$ formado por mol de SO_2 e CaO consumidos foi maior quando houve o uso de uma menor velocidade superficial. Aqui já se observa uma tendência de maior consumo de reagentes para um maior tempo de residência, como esperado.

Condição	mols CaSO ₄ /mols SO ₂ feed	mols CaSO ₄ /mols CaO feed	ξ (n°mols/h)
A4	0,625	0,333	-7,29
B4	0,518	0,322	-10,35
A7	0,457	0,225	-7,98
B7	0,480	0,273	-8,79

Tabela 4: Estequiometria da dessulfuração quanto ao rendimento de CaSO₄ e extensão da reação.

Para uma comparação das condições A4 x B4 e A7 x B7, isto é, para mesmas condições fluidodinâmicas, porém carvões diferentes, há questões a serem consideradas. Especialmente, verificam-se valores distintos na extensão da reação. Mesmo com menor conversão de SO₂ para o Carvão B nas condições A4 x B4 e conversão similar nas condições A7 x B7, o Carvão B apresentou uma maior extensão da reação quanto ao consumo de SO₂, em mols/h. Este comportamento vem a ser consequência do maior teor de enxofre no Carvão B, o qual, apesar de apresentar menor % de dessulfuração, conseguiu manter maior taxa de reação. Além disso, para o mesmo carvão, as condições fluidodinâmicas mostraram uma influência significativa, uma vez que, para uma velocidade superficial de 0,9 m/s a extensão da reação foi de - 10,35 mols SO₂/h na condição B7.

3.3 Análise mineralógica das cinzas

Os difratogramas da análise mineralógica por Difração de Raios X seguem nas Figuras 2, sem dessulfuração e com dessulfuração, para as duas U_s utilizadas, com Razão Molar Ca/S de 2,0.

Observou-se nas cinzas A4, A7 e B4 a presença de sulfito de cálcio (CaSO₃). Em uma primeira análise, não é possível relacionar a formação de tal composto com a condição fluidodinâmica, uma vez que, nas respectivas cinzas, foram aplicadas velocidades superficiais de 0,9 e 1,2 m/s. De qualquer maneira, segundo Dam-Johansen and Ostergaard (1991), a formação de CaSO₄ a partir de CaO e SO₂, com oxigênio no sistema, pode ocorrer tanto pela formação inicial de CaSO₃ e subsequente oxidação a CaSO₄, ou oxidação direta a CaSO₄ a partir da formação de SO₃ a partir do SO₂ e subsequente reação com o CaO. Tais considerações, a partir dos resultados, sugerem que, para o leito fluidizado borbulhante, pelo menos para o Carvão A a rota para a dessulfuração do SO₂ com calcário dolomítico ocorre pela formação intermediária do CaSO₃, como proposto na Rota I.

Mais ainda, ao longo da operação de dessulfuração, foi observado nos difratogramas a formação de Monticellite (CaMgSiO₄), provavelmente oriundo da interação da dolomita, CaMg(CO₃)₂ com a sílica presente no leito, o que vem a ser um resultado ainda não descrito na literatura.

19 a 22 de outubro de 2014 Florianópolis/SC

Figura 2: Difratogramas das cinzas Sem dessulfuração (A1 e B1); Com Dessulfuração Ca/S 2.0 e $U_s = 0.9 \text{ m/s}$ (A4 e B4), e Com Dessulfuração Ca/S 2.0 e $U_s = 1.2 \text{ m/s}$ (A7 e B7).

3.4 Elutriação

A Tabela 5 apresenta a % de cinzas obtidas a partir do Ciclone 1 nas condições A4 e A7 assim como a porcentagem de CaO a partir do mesmo ciclone.

E	Elutração do Carvão A para a Razão Molar Ca/S 2,0 e $O_s = 0,9$ m/s an						
	Condição	A4	A7				
	% Cinza Silo 1	60,5	55,4				
	% CaO Silo 1	43,07	37,32				

Tabela 5: Elutriação do Carvão A para a Razão Molar Ca/S 2,0 e $U_s = 0.9$ m/s and 1,2 m/s.

Os valores da Tabela 5 sugerem que a elutriação para as cinzas e o CaO proveniente do calcário tende a ser distinta. Primeiramente, deve ser comentado que a % tanto de cinzas quanto de CaO presente no Silo 1, proveniente do Ciclone 1, foi levemente menor para a condição A7, quando houve maior velocidade de entrada de ar. Este vem a ser um valor distinto do normalmente esperado. Usualmente, tem-se maior elutriação para uma maior velocidade superficial. Com isso, tem-se a hipótese de que tais porcentagens elutriadas e abatidas no Ciclone 1 vêm a ser as máximas obtidas para este equipamento durante a operação nas condições de fluidização borbulhante, uma vez que chegou a ser observada a presença de leito elutriado nas cinzas obtidas da condição A7. Além disso, em tais condições, a visualização do leito mostrou uma condição turbulenta.

Consequentemente, pergunta-se se o restante das cinzas e do CaO ficou mais concentrado no leito ou, por fragmentação, não foram possíveis de serem abatidos pelo Ciclone 1 (e também pelo Ciclone 2, onde não foi observado abatimento). Na Figura 3, observam-se, com exceção da Hematita, os produtos oriundos da adição de calcário dolomítico e da dessulfuração *in situ*. Tais resultados sugerem que tais produtos da dessulfuração, se não abatidos pelo Ciclone 1 e armazenados no Silo 1, tendem a se concentrar no leito, o que pode explicar a menor concentração de CaO no Silo 1 em comparação com as cinzas como mostrado na Tabela 6.

Figura 3: Difratograma do leito após a operação com o Carvão A.

4. CONCLUSÕES

Quanto à análise estequiométrica, o maior valor da extensão da reação para as duas velocidades superficiais do Carvão B deve ser salientado, apesar de apresentar menor % de dessulfuração, conseguindo manter maior taxa de reação. A análise mineralógica mostrou a presença, além dos produtos usuais da dessulfuração em leito fluidizado, a presença de CaSO₃. A formação de tal composto sugere que a rota de dessulfuração ocorre por duas reações em série, tendo a formação de CaSO₃ como um composto intermediário. Observou-se, claramente, uma menor concentração de CaO elutriado em comparação com as cinzas. Tais valores foram explicados pela tendência de concentração dos produtos da dessulfuração – CaSO₄, CaO, CaSO₃ – no leito após a dessulfuração.

6. REFERÊNCIAS

ANTHONY, E.J.; GRANATSTEIN, D.L. Sulfation phenomena in fluidized combustion systems. *Progress. in En. and Comb. Sci.*, v. 27, p. 215-236, 2001.

DAM-JOHANSEN, K.; OSTERGAARD, K. High-temperature between sulphur dioxide and limestone – IV. A discussion of chemical reaction mechanism and kinetics. *Chem. Eng. Sci.*, v. 46, p. 588-859, 1991.

HIMMELBLAU, D.M.; RIGGS, J.B. Basic Principles and Calculations in Chemical Engineering. Rio de Janeiro: Pearson, 2006.

HLINCIK, T.; BURYAN, P. Evaluation of limestones for the purposes of desulphurization during the fluid combustion of brown coal. *Fuel*, v. 104, p. 208-215, 2013.

KUNII, D.; LEVENSPIEL, O. Fluidization Engineering. Londres: Butterworths, 1991.

MONTANGRO, F.; SALATINO, P., SCALA, F. The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions. *Exp. Thermal and Fluid Sci.*, v. 34, p. 352-358, 2010.

SCALA, F.; LUPÍAÑEZ, C.; SALATINO, P.; ROMEO, L.M.; DÍEZ, L.I. Primary fragmentation of limestone under oxy-firing. *Fuel Proc. Tech.*, v. 92, p. 1449-1456, 2011.

SUYADAL, Y.; EROL, M.; OGUZ, H. Deactivation model for dry desulphurization of simulated flue gas with calcined limestone in a fluidized-bed reactor. *Fuel*, v. 84, p. 1705-1712, 2005.

TARELHO, L.A.C; MATOS, M.A.A.; PEREIRA, F.J.M.A. The influence of operational parameters on SO₂ removal by limestone during fluidized bed combustion. *Fuel Proc. Tech.*, v. 86, p. 1385-1401, 2005

ULERICH, N.H.; NEWBY, R.A.; KEAIRNS, D.L. A thermogravimetric study of the sulfation of limestone and dolomite – Prediction of pressurized and atmospheric fluidized bed desulfurization. *Thermoch. Acta*, v. 36, 1-16, 1980.

YATES, J.G. Fundamentals of Fluidized-Bed Chemical Processes. Londres: Butterworths, 1983.