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ABSTRACT. Hydrofluidization (HF) is a method of chilling and freezing of 
foods that pumps a refrigerating liquid upwards through orifices into a vessel 
creating submerged jets and thus results in extremely high surface transfer 
phenomena. The objective was to model the flow field and the velocity profiles of 
spheres in a HF system using computational fluid dynamics and a discrete element 
method. The HF system consisted in a cylindrical vessel of 100‒mm diameter and 
100‒mm height and a perforated plate with orifices of 3‒mm diameter. The 
samples were 13 potato spheres of 10‒mm diameter. The operative variables were 
temperature (‒5°C, ‒10°C), distance among the orifices (10 mm, 20 mm) and 
average velocity of the fluid at the orifices (0.59 m/s, 1.18 m/s). The results are 
promising to obtain relevant information about the momentum transfer and the 
dynamics of samples being processed within a HF system. 

 
 

1. INTRODUCTION 
 

Hydrofluidization (HF) is a method of chilling and freezing of foods that pumps a 
refrigerating liquid upwards through orifices into a vessel creating submerged jets and thus 
results in extremely high surface transfer phenomena (Fikiin, 1992; Peralta et al., 2012). 
Under controlled conditions, it represents an attractive industrial method with advantages 
related to the small equipment used and the improvement of the freezing of individual pieces 
of food, besides the advantages related to the immersion chilling and freezing process (ICF). 

 

Several experimental (Verboven et al., 2003; Peralta et al., 2009) and theoretical 
(Peralta et al., 2010; 2012; Belis et al., 2012; 2013; 2014) studies on HF were conducted 
using different operative and geometric configurations. Those studies showed the effects of 
flow rate, refrigerant temperature, number of orifices, orifice arrangement, orifice-sample 
distance, orifice-orifice distance and sample-sample distance (Peralta et al., 2012; Belis et al., 
2012; 2013; 2014) on the heat, momentum and mass transfer within the system. As a result, a 
better understanding of the relationship between the operative variables and the transport 
phenomena in simple HF configurations was obtained. However, in most of these studies, 
food samples were static single spheres impinged by single jets. Although those studies are 
useful as a first approach, their simplified nature limited the description capability of the 
methods used and consequently, the information of the transport phenomena involved. Thus, 
studies with several food samples are necessary. 
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the orifices (V = 0.59 m s-1 and V = 1.18 m s-1). A total of 8 conditions were used. These 
conditions were codified as follows: TxxVyyySz, where xx are the digits of T (absolute 
value), yyy are the digits of V (multiplied by 100) and z is the digit of S. For example: the 
code T10V059S2 means T = ‒10°C, V = 0.59 m s-1 and S = 2 cm. 

 
 

2.2. Mathematical Modeling 
 

The flow field was modeled by solving mass (continuity) and momentum 
(Navier‒Stokes) balances. The turbulence effect was estimated by the two parameter κ‒ω 
Shear Stress Transport (SST) model (Fluent, 2011). 

 

The relative movement of the spheres was considered taking into account the 
interactions between the fluid and the spheres, among spheres and between spheres and solid 
walls. These interactions were estimated through momentum balances for each sphere and 
structural data of the food. The sphere-fluid interactions were calculated by using a discrete 
phase method (DPM) and the sphere-sphere and sphere-wall interactions were estimated by 
using a discrete element method (DEM) (Fluent, 2011). The collisions were estimated taking 
into account elastic, viscous and friction effects (Fluent, 2011). A default set of the 
mechanical properties needed for the collisions of the spheres were used (Fluent, 2011). 

 
 

2.3. Computational Domain and Analyzed Variables 
 

The computational domain was similar to the physical domain. The main assumptions 
were those proposed by Peralta et al. (2010). A 6-mm slit at the top of the cylindrical wall 
was used as a fluid exit (Figure 1). Solid walls were assumed to be adiabatic and the system 
pressure was 0.1 MPa. A 1/7th power velocity profile was used in the round orifice because a 
fully turbulent liquid-jet with a turbulence intensity of 5% was assumed. 

 

A mesh composed by tetrahedral elements was used to discretize the computational 
domain. This mesh was denser near the orifices. 

 

Each condition was simulated up to 8 s. In the first 3 s, only the momentum and mass 
balances in the fluid were simulated to reach steady state conditions in the flow field. After t = 
3 s, the spheres were injected and the following 5 s were used to simulate their movements 
and interactions inside the domain. 

 

The momentum and mass balances for the fluid and the spheres (Navier‒Stokes, 
continuity, DPM and DEM) were solved using the commercial CFD software 
ANSYS‒ICEM‒CFD 14.1 and ANSYS‒FLUENT 14.1 (ANSYS Inc., Canonsburg, USA). 
The simulations were carried out using a PC with an Intel core i7 3930 processor of 3.2 GHz 
with 16 GB of RAM (DDR3 1600 MHz). Each simulation took approximately 90 h to 
converge. 

 

Representative variables were used to study the flow field and spheres velocities. These 
variables were the volume‒averaged sphere velocity vp (Equation (1)) and the 
volume‒averaged slip velocity vslip (Equation (2)). 

 

1

T
p T pV

v V v dV   (1) 
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1 1  
T T

slip T slip T p fV V
v V v dV V v v dV      (2) 

 

where pv  is the magnitude of the velocity vector of an sphere pv  [m s-1], slipv  is the 

magnitude of the relative velocity to the fluid of an sphere p fv v  [m s-1], fv  is the velocity 

vector of the fluid at the center position of an sphere [m s-1] and TV  is the domain volume. 
 
 

2.4. Model Validation 
 

The mathematical model was partially validated using heat transfer data from Belis et 
al. (2012) for a similar HF configuration but using static spheres. This validation is shown in 
Part II (Oroná et al., 2014). 

 
 

3. RESULTS AND DISCUSSION 
 

3.1. Independence Test 
 

A mesh independence test was carried out testing 6 different mesh compositions (from 
86296 to 170770 tetrahedra) using profiles of vp and vf (i.e. area-averaged fluid velocity) at 
t = 3 s for the condition T5V118S1. Based on this procedure and taking into account heat 
transfer and turbulence intensity variables checked in Part II (Oroná et al., 2014), a mesh 
composed by 170770 tetrahedra was used for the simulations. It is important to mention that 
to minimize convergence problems, a mesh with elements of the same or greater size than the 
spheres were considered in the selection procedure (Fluent, 2011). Figure 2 shows the 
velocity profiles for the meshes checked. 

 

 
Figure 2 ‒ Mesh independence. Local values of (a) vp as a function of time and (b) vf as a 

function of axial position for different mesh compositions. 
 
 

3.2. Velocity Contours and Streamlines 
 

Velocity contours with their respective streamlines for half of the conditions studied are 
shown in Figure 3. Only conditions with T = ‒5ºC are presented due to their similarity with 
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zero value is obtained at this minimum but is not shown in Figure 5b due to the time 
discretization used to show the results. Then, a second maximum value is observed when (and 
where) a maximum value of vp is obtained. Later, a plateau or a slight decrease is observed 
similarly to the vp profiles (Figure 5a) due to the small values of vf. Finally, a value of 
vslip equal to vf is obtained due to the spheres reached the liquid-air interface and vp = 0. 
For cases with V = 1.18 m s-1 and S = 1 cm, higher final values of vslip are obtained, possibly 
due to the synergic effect of V and S on vf. Finally, the effect of the operational variables on 
vslip was similar to that observed for vp (Figure 5a). In general, an increment in S and a 
decrease in V and T (marginal effect), produced a decrease in vslip. 

 

 
Figure 5 ‒ Profiles of (a) vp and (b) vslip as a function of time for the studied conditions. 

 
 

4. CONCLUSIONS 
 

A study of the effect of operational variables (flow rate and temperature) and the 
number of orifices, on the transfer of momentum and mass that occur between moving 
spheres and the refrigerant in a HF system was performed. It was carried out using a 
mathematical model that solved Navier‒Stokes and continuity with CFD and the mobility of 
spheres using discrete phase (DPM) and discrete element methods (DEM). Representative 
variables such as velocity contours and streamlines for the fluid and absolute and relative 
velocity profiles for the spheres were used to study the transfers. In general, S was the most 
significant parameter followed by V. The refrigerant temperature had a marginal effect on the 
studied transfers. 

 

This study, along with Part II, shows that the combination of CFD with DPM and DEM 
can be a powerful tool to simulate and study real HF systems with a minimum computational 
requirement compared to other approaches such as solid-fluid interaction studies. 
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