

OBTENÇÃO DE EXTRATOS DA POLPA DE AÇAÍ (EUTERPE OLERACEA) LIOFILIZADA POR EXTRAÇÃO SUPERCRÍTICA: ISOTERMAS DE RENDIMENTO GLOBAL E COMPOSIÇÃO EM ÁCIDOS GRAXOS

C. C. R. BATISTA¹, A. P. M. SANTOS², A. P. S. SILVA³, R. M. CORDEIRO⁴, M. E. ARAÚJO⁵, N. T. MACHADO⁵, A. M. C. RODRIGUES⁶, R. N. CARVALHO JR⁶.

¹Universidade Federal do Pará, Programa em Engenharia dos Recursos Naturais da Amazônia, Curso de Doutorado em Engenharia de Recursos Naturais ¹
²Universidade Federal do Pará, Faculdade de Engenharia de Alimentos, Curso de Engenharia de Alimentos

³Universidade Federal do Pará, Faculdade de Ciências Exatas e Tecnologia, Curso de Engenharia Industrial

⁴Universidade Federal do Pará, Programa de Pós Graduação em Engenharia Química, Curso de Mestrado

⁵Universidade Federal do Pará, Faculdade de Engenharia Química ⁶Universidade Federal do Pará, Faculdade de Alimentos Email para contato: camila_cassia05@yahoo.com.br

RESUMO – O trabalho tem como objetivo realizar uma avaliação sistemática da influência das variáveis do processo (temperatura, pressão e densidade de solvente) no rendimento global e composição em ácidos graxos de extratos obtidos da polpa de açaí (*Euterpe olearacea*) liofilizada na extração com dióxido de carbono supercrítico. Avaliaram-se três isotérmicas de rendimento global nas temperaturas de 50, 60 e 70°C combinadas com densidades de CO₂ de 0.7, 0.8, 0.9 g/ml, e com pressões variando de 150 a 490 bar, e vazão volumétrica de CO₂ de 3L/min. O tempo de extração foi de 0,5 horas de período estático e 3 horas de período dinâmico. A composição em ácidos graxos para cada extrato foi determinada por conversão de ácidos graxos em ésteres metílicos, baseado pelo método proposto por Rodrigues *et al.* (2010). Observou-se que maiores rendimentos foram obtidos na temperatura de 70° C e pressão de 490 bar e menores rendimentos na temperatura de 60°C e pressão de 190 bar.

1. INTRODUÇÃO

O desenvolvimento de tecnologias e processos de produção de extratos naturais livres de compostos químicos tóxicos é favorecido por diversas questões, entre elas, o interesse industrial na obtenção de substâncias bioativas de alto valor agregado e a crescente restrição à utilização de substâncias sintéticas. E umas das alternativas tecnológicas de obtenção de extratos é o processo de extração com fluido supercrítico (EFSC), em especial, com o dióxido de carbono, o qual proporciona a obtenção de produtos isentos de solventes residuais, possuindo os produtos obtidos qualidade superiores, quando comparadas aos produtos obtidos por técnicas convencionais.

A extração por fluido supercrítico é um método de separação que, até certo ponto, une os princípios da destilação e extração por solvente, utilizando as propriedades especiais de fluidos nas condições supercríticas (WENNERSTEN, 1992). Trata-se de um processo promissor para extrair compostos naturais de matérias-primas vegetais, evitando a degradação térmica e a presença de resíduos de solventes nos extratos (GARCÍA-RISCO *et al.*, 2011). Além disso, apresenta várias vantagens em relação às técnicas de extração convencionais. A temperatura de operação no EFSC é razoavelmente baixa, permitindo que compostos termicamente estáveis sejam separados. Diferentemente do que ocorre nas técnicas tradicionais, no processo EFSC a extração acontece de forma quase instantânea, com extratos sendo separados dos solventes apenas por redução na pressão do sistema ou ajuste da temperatura (BHATTACHARJEE *et al.*, 2007).

Os fluidos supercríticos apresentam viscosidade baixa como a de um gás, alta densidade como os líquidos e difusão intermediária entre gases e líquidos, variando com a sua densidade. São prontamente adaptáveis a muitas separações difíceis, não somente por permitir a separação de materiais instáveis termicamente, a baixas temperaturas, mas também devido a alta compressibilidade e solubilidade exponencial, e ainda efetuar separações com pequenas variações de pressão (SILVA *et al.*, 1997). Entre diversos compostos utilizados nas EFSC, o dióxido de carbono é o mais comumente utilizado, pois reúne as condições ideais de solvente: inerte, atóxico, gasoso em condições normais, de baixo custo, podendo ser facilmente separado do produto extraído e recuperado no processo.

Neste contexto, o trabalho tem como objetivo realizar uma avaliação sistemática da influência das variáveis do processo (temperatura, pressão e densidade de solvente) no rendimento global e composição em ácidos graxos de extratos obtidos da polpa de açaí (*Euterpe olearacea*) liofilizada a partir da extração com dióxido de carbono supercrítico, afim de que possa colaborar com estudos futuros de obtenção de extrato usando a tecnologia do fluido supercrítico para fins alimentícios, cosméticos e farmacêuticos.

2. MATERIAIS E MÉTODOS

2.1 Matéria-prima

Os frutos de açaí foram adquiridos na Feira do Município de Abaetetuba, no estado do Pará, durante o período de safra em agosto de 2013.

2.2 Caracterização e preparação da matéria-prima

<u>Despolpamento</u>: Os frutos de açaí foram lavados com água corrente e colocados em tanques com água quente a 50°C para o amolecimento da polpa durante 15 minutos. Depois, os frutos foram colocados na batedeira de açaí e adicionou-se água filtrada para retirada da polpa. A polpa obtida foi armazenada em sacos plásticos e congelada em freezer.

<u>Liofilização</u>: Inicialmente a polpa de açaí foi triturada em liquidificador (BRITÂNICA), acondicionada nas bandejas do liofilizador e levadas em freezer vertical (BRASTEMP) para

congelamento na temperatura de -25°C durante 24 horas. Em seguida a polpa congelada junto às bandejas foi colocada no liofilizador (LIOTOP, modelo: L101) e submetidas a condições de liofilização a uma pressão de 138 µ mmHg e temperatura do condensador de -51°C durante 24 horas. A polpa de açaí liofilizada foi armazenada em sacos plásticos a vácuo e levados ao freezer.

Determinação da granulometria: A polpa de açaí liofilizada foi introduzida num jogo de peneiras de série padrão Tyler 8 a 42 meshes. A distribuição granulométrica foi realizada através de um agitador de peneiras tipo magnético (BERTEL, N° 1713) durante 30 minutos. A quantidade de massa retida em cada peneira foi pesada em balança semi-analítica (QUIMIS, Q520), acondicionada em sacos plásticos e armazenada em freezer doméstico (ELETROLUX). O diâmetro médio das partículas foi determinado de acordo com o método da ASAE (1998).

<u>Determinação da umidade</u>: O teor de umidade da polpa de açaí foi determinado utilizando um analisador de umidade por Infra-Vermelho (GEHAKA, Modelo IV 2500).

<u>Determinação da densidade real das partículas:</u> A densidade real foi determinada pela Central analítica do Instituto de Química da UNICAMP, utilizando um picnômetro de gás hélio conforme manual de operação de equipamento (Picnômetro automático Quantachrome Ultrapyc 12200e).

2.3 Unidade de extração supercrítica

Para obtenção dos extratos da polpa de açaí liofilizada foi utilizado a unidade Spe- ed SFE (Applied Separations, Inc., Allentown, PA USA, modelo 7071) equipada com recirculador (POLYSCIENCE, F08400796), um compressor (SCHULZ, modelo CSA 7,8), um medidor de vazão de CO_2 na saída do sistema (Alicat Scientific, M5SLPM) e um cilindro de CO_2 (LINDE, pureza 99,9%).

2.4 Determinação das isotermas de rendimento global

Os experimentos para a determinação das isotermas de rendimento global foram realizados na célula de extração com 1,4 cm de diâmetro e 32,5 cm de altura. Foram realizadas extrações em três temperaturas (50, 60 e 70°C) combinadas com densidade de CO₂ (0.7, 0.8 e 0.9 g/ml) em pressões que variaram de 150 a 490 bar totalizando nove ensaios que foram replicados. O tempo de processo de extração (0.5 horas de período estático e 3 horas de período dinâmico), a massa de matéria-prima alimentada (10 gramas) na célula e a vazão de CO₂ (3L/min) foram mantidos constantes.

2.5 Composição em ácidos graxos

A composição em ácidos graxos dos extratos obtidos da polpa de açaí liofilizada foi determinada pela conversão em ésteres metílicos de ácidos graxos (EMAGs) de acordo com o método proposto por Rodrigues *et al.* (2010), utilizando para análise um Cromatógrafo a Gás (Varian modelo CP 3380) acoplado com detector de ionização em chama (DIC) e coluna

capilar CPSil 88 de 60 m de comprimento, diâmetro interno de 0.25 mm e espessura do filme de 0.25 μ m da Varian Inc. Foi injetado 1 μ l, sendo que gás hélio foi utilizado como fase móvel com vazão de 0,9 ml/min e o DIC e o injetor (splitratio 1:100) a 250 °C. A programação de temperatura da coluna foi desempenhada de 80 °C por 4 min e então elevada para 205 °C com 4 °C/min.

A identificação dos picos individuais de ácidos graxos foi realizada com base em padrões (Nu-check-prep Inc, EUA). Assim como, utilizou-se o software Varian Star 3.4.1 para calcular os tempos de retenção e áreas dos picos. Os resultados foram expressos com percentuais relativos de ácidos graxos totais.

3. RESULTADOS E DISCUSSÕES

A polpa de açaí liofilizada apresentou 2.3 ± 0.2 % de umidade, densidade real (ρ_r) de 1.23 ± 0.01 g/cm³. O diâmetro médio das partículas foi de 0.8659 mm.

No gráfico1, estão apresentados os resultados obtidos experimentalmente das Isotermas de rendimentos globais em base seca para as temperaturas de 50, 60 e 70°C, com seus respectivos desvios pontuais. Pode-se observar que o maior rendimento foi obtido na condição experimental de 70 °C e 490 bar, enquanto que o menor rendimento foi obtido na condição de 60°C e 190 bar, que correspondem a 45,4±0,58% e 9,07±0,6 %, respectivamente. O efeito da temperatura e pressão influência diretamente na densidade e, consequentemente, no poder de solubilização do solvente. A isoterma de 70°C foi a que apresentou maior rendimento para todas as pressões aplicadas enquanto a isoterma de 60°C foi a que apresentou menor rendimento. Com o aumento na densidade do dióxido de carbono houve o aumento no rendimento global de extrato em todas as condições experimentais estudadas com isso observa-se que o efeito da densidade do dióxido de carbono foi a que mais prevaleceu.

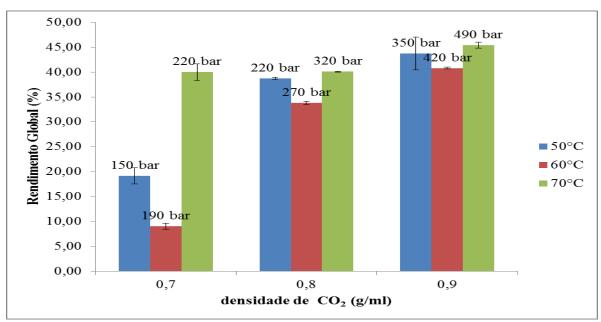


Gráfico1-Isotermas de rendimento mássico global

Na tabela 1, estão apresentados o perfil de ácidos graxos dos extratos de polpa de açaí liofilizada obtidos através de extração com dióxido de carbono no estado supercrítico em diferentes condições operacionais. O desvio padrão para todos os ácidos graxos foi menor que 1.8%. A quantidade total de ácidos graxos nos extratos de açaí variou de 0.02 a 65.81%. Foi observado a presença de ácido caprílico (C8:0) em todas as condições experimentais utilizadas para obter o extrato de açaí. A condição 320 bar/70°C apresentou maior concentração de ácido caprílico enquanto a menor concentração foi encontrada na condição de 490 bar/70°C. Traços de ácido cáprico (C10:0) foi obtido nas condições de 150 bar/50°C, 220 bar/70°C, 320 bar/70°C e 490 bar/70°C. Para o ácido tridecanoico (C13:0), ácido pentadecanoíco (C15:0) e ácido linolênico (C18:3) apenas traços foram encontrados em todas as condições experimentais. O principal ácido graxo saturado (SFA) em todas as condições de extração foi o ácido palmítico (C16:0) com concentração de 90.86% na condição de 320 bar/70°C seguido pelo ácido esteárico (C18:0). Em relação aos ácidos graxos poli-insaturados (PUFA), o ácido oleico (C18:1) apresentou maior concentração 65.81% seguido pelo linoleico (C18:2) e o ácido palmitoleico (C16:1). Analises do perfil de ácidos graxos de extrato de acaí indica uma razão de saturado/insaturado baixo e a quantidade de MUFA é maior que a de PUFA. Os resultados encontrados neste trabalho para o ácido oleico são próximos aos encontrados por Nascimento et al., (2008), Schauss et al., (2006) e Rogez, (2000) de 52%, 56.2% e 54.9%, respectivamente, com exceção do extrato obtido nas condições de 320 bar/70°C, no qual o percentual desse ácido foi de 0.23%, sendo que nessas condições operacionais observou-se maior seletividade para obtenção de ácido palmítico 90.86%).

Tabela 1- Composição em ácidos graxos de extrato de açaí

Concentração de Ácidos Graxos em % g/100mg									
Ácidos Graxos	50°C, 150 bar	50°C, 220 bar	50°C, 350 bar	60°C, 190 bar	60°C, 270 bar	60°C, 420 bar	70°C, 220 bar	70°C, 320 bar	70°C, 490 bar
C8:0	0.6908	1.2668	0.8370	0.7730	1.5816	0.4008	0.3378	2.2799	0.0214
C10:0		0.0373	0.0299	0.0250	0.0415	0.4003	0.3376		0.0214
C12:0	0.0759	0.1752	0.1735	0.1357	0.1925	0.2527	0.0767	0.3387	0.1414
C13:0							0.0234	0.2152	
C14:0	0.1332	0.2400	0.1695	0.1919	0.2120	0.3097	0.1358	0.4284	0.1882
C15:0									
C16:0	28.1504	30.9182	23.4724	26.2933	29.2083	28.5832	25.4190	90.8646	27.8123
C16:1	4.9504	0.0304	5.4979	6.1487	7.0855	6.8369	4.1602	0.0850	5.8132
C17:0		0.0423	0.1409	0.0320			0.0527	0.1905	0.0376
C18:0	1,0512	1.2554	1.0214	0.8039	1.1411	1.1647	1.4390	5.3583	1.3353
C18:1	64.8672	65.8103	52.7321	50.7890	60.4291	62.4172	55.7127	0.2394	64.6504
C18:2			15.5448	14.8073			12.5961		
C18:3									
C20:0	0.0810				0.1087				
C22:0		0.2240	0.3807				0.0465		
SFA	30.1825	34.1592	26.2253	28.2548	32.4857	30.7458	27.5309	99.6756	29.5362
MUFA	69.8176	65.8407	58.2300	56.9377	67.5146	69.2541	59.8729	0.3244	70.4636
PUFA			15.5448	14.8073			12.5961		

C8:0 (ácido caprílico); C10:0 (ácido capríco); C12:0 (ácido láurico); C13:0 (ácido tridecanoíco); C14:0 (ácido míristico); C15:0 (ácido pentadecanoíco); C16:0 (ácido palmítico); C16:1 (ácido

palmitoleíco); C17:0 (ácido margárico); C18:0 (ácido esteárico); C18:1 (ácido oleico); C18:2 (ácido linoleico); C18:3 (ácido linolênico); C20:0 (ácido arachidico); C22:0 (ácido behênico);SFA (Ácidos Graxos Saturados); MUFA (Ácidos Graxos Monoinsaturados); PUFA (Ácidos Graxos Poliinsaturados).

4. CONCLUSÕES

O método de extração com dióxido de carbono no estado supercrítico foi eficaz na obtenção de extrato de açaí liofilizado principalmente na condição operacional de 70 °C e pressão de 490 bar onde obteve-se maior rendimento em extrato. Em todas as condições experimentais utilizadas neste trabalho, mostraram resultados promissores na obtenção de ácido graxos saturados e insaturados principalmente na obtenção de ácidos graxos monoinsaturados, onde a concentração destes ácidos no extrato foi de 70.46%. A presença de ácidos graxos poliinsaturados representado pelo ácido oleico (C18:1), ácido palmitoleico (C16:1) e ácido linoleico (C18:2) foi significante no extrato.

5. REFERÊNCIAS

BHATTACHARJEE, P.; SINGHAL, R. S.; TIWARI, S. R. Supercritical carbon dioxide extraction of cottonseed oil. *Journal Food Engineering.*, v. 79, n.3, p. 892-898, 2007.

BOTELHO, J. R. S.; MEDEIROS, N. G.; RODRIGUES, A. M. C.; ARAÚJO, M. E.;MACHADO, N. T.; SANTOS, A. G.; LEAL, G. W.; CARVALHO JR, R. N. Black sesame (*Sesamumindicum l*) seeds extracts by CO₂ supercritical fluid extraction: Isotherms of global yield, kinetics data, total fatty acids, phytosterols and neuroprotective effects. *Journal of Supercritical Fluids*, 2014.

GARCÍA-RISCO, M. R.; VICENTE, G.; REGLERO, G.; FORNARI, T. Fractionation of thyme (Thymus vulgaris L.) by supercritical fluid extraction and chromatography. *Journal of Supercritical Fluids*. v. 55, p. 949-954, 2011.

NASCIMENTO, R. J. S. do; COURI, S.; ANTONIASSI, R.; FREITAS, S. P. Composição em ácidos graxos do óleo da polpa de açaí extraído com enzimas e com hexano. *Revista Brasileira de Fruticultura*, v.30, n.2, p. 498-502, 2008.

RODRIGUES, A.M.C; DARNET, S.H; SILVA, L.H. Fatty acid profiles and tocoferol contentes of buriti (*Mauritia flexuosa*), patawa (*Oenocarpus bataua*), tucumã (*Astrocaryum vulgare*), mari (*Poraqueiba paraensis*) and inaja (*Maximiliana maripa*) fruits. *Journal of Brazilian Chemical Society*. Vol. 21, 2010. p. 2000-2004

ROGEZ, H. Açaí: Preparo, Composição e Melhoramento da Conservação. Belém: EDUFPA, 2000. 313p

SCHAUSS, G. A.; WU, X.; PIOR, R. L.; OU, B.; PATEL, D.; HUANG, D.; KABABICK, J. P. Phytochemical and Nutrient Composition of the Freeze-Dried Amazonian Palm Berry,

Euterpe oleraceae Martius (Acai). *Journal of Agriculture and Food Chemistry*, v. 54, n.22, p. 8598-8603, 2006.

SILVA, F. P. T.; LIBERAL, E. M.; PESSOA, F. L. P. Uso do fluido supercrítico na extração de produtos naturais. Boletim da Sociedade Brasileira de Ciência e Tecnologia de Alimentos-SBCTA. v.31, p.48-61, jan/jun, 1997.

WENNERSTEN, R. Extraction of organic compounds. Chap 9. In: RYDBERG, J.; MUSIKAS, C.; CHOPPIN, G. R. Principles and practices of solvent extraction. New York: Marcel Dekker, p. 115-356, 1992.

.