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ABSTRACT – Solid-state fementation processes are still hindered by reactor excessive 

heating due to growth of the microorganisms. To overcome this problem, the process must 

be controlled. Modeling and simulation may help the control development, and for this 

procedure parameter estimation is an important step. Not all parameters are always 

estimable, which lead us to an identifiability problem. In this work a parameter 

identifiability analysis is taken for a solid-state fermentation model with six state variables 

to evaluate the most important parameters set used in the model. The reduction from 17 to 

10 parameters to be estimated in the model led to a better fitting of the model to the 

experimental data. 

 

1. INTRODUCTION 

Solid-state fermentation (SSF) is a fermentation process that involves solids without or very 

few free water, and the substrate must have only enough moisture to enable the microorganisms to 

grow (Pandey, 2003). Agricultural wastes can be used as substrate on this process, so their cost 

with medium tend to be lower. Also, the products of SSF are easier to recover than the ones of 

submerged fermentation due their high concentration (Rahardjo et al., 2006). Moreover, Farinas et 

al. (2011) reported that enzymes produced by SSF are more stable against changes in temperature 

and pH, and their susceptibility to substrate inhibition is decreased. 

However, problems like reactor excessive heating are still difficulting process scaling-up. 

The growth of the microorganisms generates heat, and this heating may become a hard process 

control (Hölker and Lenz, 2005), which may be overcome with process modeling and simulation 

and parameters optimization (Lenz et al, 2004). 

Good assumptions and parameters estimation are essential for a reliable model for 

simulation (Schwaab and Pinto, 2007). Therefore, it is needed an objective function to be 

minimized, i.e. to minimize the errors between experimental and simulated data (Silveira et al., 

2014; Schwaab et al., 2008). However, not all parameters are always possible to be estimated, and 

there are even cases when reducing the numbers of model parameters can lead to better solutions 

(Li et al., 2004; Secchi et al., 2006). 

In this work is performed a parameters identifiability analysis for a solid-state fermentation 

model, which includes biomass growth, temperature profile, substrate, ethanol, CO2 and O2 as 

states, in order to evaluate the most important parameters used in the referred model. 
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1.1. The SSF Model and parameters 

The model used in this work is composed by 6 Ordinary Differential Equations, 1 Partial 

Differential Equation, which was discretized for the bed height, and 5 auxiliary Algebraic 

Equations, cf. Equation 1-12. This model is an extension of the models proposed by Fanaei and 

Vaziri (2008) and Silveira et al. (2014). Equation 1 describes de cells growth and it is dependent 

of Equation 2, which is a physiological state of the cells time-dependent. Equation 3 represents a 

energy balance of the reactor. 

dX/dt = µΦX(1 – X/Xm)           (1) 

dΦ/dt = γsΦ(1 - Φα) - γdΦ          (2) 

∂T/∂t = [ρs (1 - ɛ)YQ(dX/dt) + ρa CpaVz(∂T/∂z) + ρaƒλVz(∂T/∂z)]/( ρb Cpb)    (3) 

Equations 4 to 7 describes the substrate consumption and the production of ethanol 

(product), CO2 and O2. 

dS/dt =YS/X dX/dt           (4) 

dP/dt =YP/X dX/dt           (5) 

dCO2/dt =YCO2/X dX/dt           (6) 

dO2/dt =YO2/X dX/dt           (7) 

Equations 8 to 12 describes some parameters used in the previous equations through 

algebraic equations. 

µ= µmaxS/(Ks+S-k1S²)           (8) 

ρb = ɛ ρa + (1 - ɛ)ρs           (9) 

Cpb = [ɛ ρa (Cpa + ƒλ) + (1 - ɛ) ρs Cps] / ρb       (10) 

γs = γs0 exp[-Es /(R(T+273))]        (11) 

γd = γd0 exp[-Ed /(R(T+273))]        (12) 
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So, the parameters chosen initially to be estimated are: µmax, Ks, k1, �, ρs, Cps, ρa, α, Yx/s, 

YP/x, Yx/O2, Yx/CO2, Yq, Es, Ed, γs0, γd0. 

The routine for the sensibility matrix computing was based in the Equation 13. 

dWx(x,θ)/dt = Jx(x,x)Wx(x,θ) + Jp(x,θ)      (13) 

Where Wx(x,θ) are the parameter-output sensitivity elements, Jx(x,x) are the Jacobian 

derivatives of each state equation for each state variable and Jp(x,θ) are the Jacobian 

derivatives for each state equation for each estimated parameter. 

The objective function chosen to measure the error was the Least Squares, i.e. the 

quadratic difference between the experimental and the simulated data for all the state 

variables that were measured (cells, temperature, substrate, product, O2 and CO2), conform 

Equation 14. 

Fobj = ∑(yexp – ymod)²         (14) 

2. MATERIAL AND METHODS 

The experimental data were obtained by Mazutti et al. (2010). The experiments were carried 

out by 24 hours and the measure was taken hour-by-hour. Further details can be found on Mazutti 

et al. (2010) and Silveira et al. (2014) works. 

All the analysis were performed using implementations with the software Matlab®. The 

model parameter estimation was performed using a nonlinear least squares function (lsqnonlin). 

The numerical integrator used was a Dormand-Prince pair, based on a Runge-Kutta of 4th and 5th 

order, for  non-stiff differential equations (Dormand and Prince, 1980). The computer used for the 

procedures has an Intel® Core™ i7-3770 with 3.40 GHz processor and 12 Gb of RAM memory 

and it is running with the Windows 7 64 bits Operating System. 

3. RESULTS AND DISCUSSION 

The parameters sensitivity matrix was computed through Equation 13 using all parameters, 

i.e. 17 parameters. Table 1 presents the matrix obtained, which shows that µmax, Ks, k1, Yx/s, YP/x, 

Yx/O2, Yx/CO2, Yq  are unindentifiable for none of the 7 state equations used in the model. In this 

manner, they were cut off the parameter estimation, receiving just a constant value which may be 

suitable for the experimental data. 

Table 1 – Parameters sensitivity matrix 

 Cells Temperature Substrate Ethanol Φ O2 CO2 

µmax 0 0 0 0 0 0 0 
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Ks 0 0 0 0 0 0 0 

k1 0 0 0 0 0 0 0 

ε 0 -1.6600E-07 0 0 -4.394E-12 0 0 

ρs 0 4.5339E-08 0 0 1.200E-12 0 0 

Cps 0 4.1981E-07 0 0 1.111E-11 0 0 

ρa 0 -1.5113E-10 0 0 -4.000E-15 0 0 

α 0 0 0 0 7.343E-11 0 0 

Yx/s 0 0 0 0 0 0 0 

YP/x 0 0 0 0 0 0 0 

Yx/O2 0 0 0 0 0 0 0 

Yx/CO2 0 0 0 0 0 0 0 

Yq 0 0 0 0 0 0 0 

Es 0 0 0 0 -1.3638E-5 0 0 

Ed 0 0 0 0 0.02082 0 0 

γs0 0 0 0 0 0.00652 0 0 

γd0 0 0 0 0 -4.76E+36 0 0 

 

In the case of the variable µ, which depends upon µmax, Ks and k1, became a parameter to be 

directly estimated, so the specific growth rate does not get out of the microorganisms growth 

equation (Eq. 1). Thus, Equation 8 has been cut off the model. 

The parameters whose elements are non-zero for any state variable were maintained for a 

new estimation. Therefore, the amount of parameters to be estimated has decreased from 17 to 10. 

The remaining parameters were estimated in a new simulation and a new objective function was 

computed according to Equation 14. The comparison between the model with all 17 parameters 

and with 10 parameters can be seen in Tables 2 and 3, respectively. 

Table 2 – Sum of objective function values for each experiment in each state variable for the 

model with all parameters (17) 

Experiment Cells Temperature Substrate Ethanol O2 CO2 

1 0.183067 0.886802 0.228444 0.160529 0.159687 0.135407 

2 0.212329 0.343354 0.25857 0.169698 0.167935 0.080861 

3 0.161772 0.668343 0.308412 0.12323 0.12167 0.0464 

4 0.099425 0.625356 0.07096 0.0861 0.085678 0.093034 

5 0.065099 0.460677 0.271329 0.046892 0.046255 0.038709 

6 0.461275 0.62593 0.400723 0.422146 0.420535 0.346136 

7 0.142453 0.851488 0.807647 0.125594 0.125016 0.119266 

Sum 1.325421 4.46195 2.346085 1.134188 1.126775 0.859813 
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Table 3 – Sum of objective function values for each experiment in each state variable for the 

model with reduced number (10) of parameters 

Experiment Cells Temperature Substrate Ethanol O2 CO2 

1 0.257496 0.891319 0.212907 0.170438 0.176417 0.160864 

2 0.056612 0.404933 0.26836 0.042987 0.040103 0.06014 

3 0.097446 0.75927 0.306745 0.040749 0.042754 0.043151 

4 0.143648 0.5843 0.071584 0.079771 0.081926 0.081687 

5 0.040779 0.520592 0.184263 0.018837 0.017888 0.030166 

6 0.277789 0.659184 0.335948 0.321551 0.314702 0.350699 

7 0.219758 0.847304 0.737764 0.145092 0.151003 0.135688 

Sum 1.093528 4.666902 2.117571 0.819425 0.824793 0.862396 

 

As can be seen from Tables 2 and 3, the model whose estimation with only 10 parameters 

was used performed even better, showing that its sum of the normalized objective function was 

10.3846 against 11.2542 of the model with all parameters estimated. The parameters used in both 

simulations are reported in Table 4. 

Table 4 – Parameters values used in both simulations (*were not included in estimation). 

Parameters All parameters estimated Reduced parameters estimated 

µmax 0.8243 0.8243* 

Ks 0.00024 0.00024* 

k1 0.3109 0.3109* 

𝜀 0.9991 0.9991 

ρs 269.9952 269.9952 

Cps 2499.9575 2499.9575 

ρa 0.9000 0.9000 

α 11.0000 11.0000 

Yx/s 1.0241 1.0241* 

YP/x 1.0160 1.0160* 

Yx/O2 0.9835 0.9835* 

Yx/CO2 0.9392 0.9392* 

Yq 8.3660E+06 6.6928E+06* 

Es 6.8137E+04 6.8137E+04 

Ed 2.9451E+05 2.9451E+05 

γs0 9.7603E+08 9.7603E+08 

γd0 8.7400E+45 8.74e+45 
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Further, Figures 1-3 presents the comparison between experimental data and simulations for 

each state variable for one experiment, where can be seen that both models are very similar, 

although the parameter reduction. 
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Figure 1 – a) Cells growth and b) temperature profiles versus time for experimental data, model 

with all parameters estimated and model with reduced parameters estimated. 
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Figure 2 – a) Substrate consumption and b) Ethanol production versus time for experimental data, 

model with all parameters estimated and model with reduced parameters estimated. 
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Figure 3 – a) O2 and b) CO2 production versus time for experimental data, model with all 

parameters estimated and model with reduced parameters estimated. 

Figures 1-3 show how close one model is from the other, permitting to conclude once more 

that even with the reduction of the parameters to be estimated the reliability of the model is still 

true. 

4. CONCLUSIONS 

Parameters identifiability techniques can be very useful for reduction of parameters of a 

model. The reduction from 17 to 10 parameters in this model of solid-state fermentation led to a 

very small reduction of the least squares objective function, which means that the reduction of 7 

parameters have not changed the model reliability, or, even more, it increased the precision of the 

model in a general way. 

The obtained results could be used for more statistical analysis or even another parameter 

reduction. Furthermore, the reduction of parameters could be useful for a process control 

implementation. 
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