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ABSTRACT – Simulations can lead to many process advantages, like quality of the 

product, scaling-up, process control and optimization. However, to turn on the model 

used in the simulation reliable, it is necessary a good parameter set to fit the 

experimental data. In this manner, parameter estimation is very important to keep the 

model adjusted. The main goal of this study is to estimate the parameters of ordinary 

differential equations set in a solid-state fermentation process model. The process 

model is composed by a set of seven ordinary differential equations that represents 

respectively the cells profile, cells physiological state, temperature, substrate 

consumption and production of ethanol, carbon dioxide and oxygen by the cells 

metabolism. The model used in this work was statistically validated and the results 

have shown that it is able to predict the experimental data. 

 

1. INTRODUCTION 

The use of process simulations can lead to advantages, like optimization, process safety,  

product quality (Zhang et al., 2008), can be economically convenient and facilitate measuring 

some process variables (Yamada et al., 2005), or even in control developing (Salau et al., 2008). 

Besides a reliable model, good parameter estimation is required to keep the model adjusted to 

experimental data, usually through the minimization of an objective function (Schwaab et al., 

2008). 

In this work is presented a model for a solid-state fermentation (SSF), which is a 

fermentation process without any free water, i.e. only water that is attached to the substrate cells is 

available in amount enough to allow microorganisms grow (Pandey, 2003). SSF has lower energy 

requirements and wastewater production when compared to submerged fermentation, also it can 

use agroindustrial byproducts as substrate (Mazutti et al., 2010), and has easier products recovery 

(Rahardjo et al., 2006). 

1.1.  Solid-state fermentation modeling 

The model presented in this work is based on the Verhulst Logistic Equation (Verhulst, 

1838), on the work of Fanaei and Vaziri (2009) and Silveira et al. (2014). Also, it was included 

some yield coefficients to predict the substrate consumption, ethanol, CO2 and O2 production. 

Also, the substrate inhibition hypothesis was used to evaluate the specific growth variable µ, as it 

can be seen on Equation 1. 

µ= µmaxS/(Ks+S+k1S²)           (1) 
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Further, the bed density and specific heat algebraic equations (Equations 2-3) were used to 

support the phenomenological heat transfer equation (Equation 4), which is strongly dependent on 

the cells growth profile through the metabolic heat term (YQ) and based on energy balance. 

ρb = ɛ ρa + (1 - ɛ)ρs           (2) 

Cpb = [ɛ ρa (Cpa + ƒλ) + (1 - ɛ) ρs Cps] / ρb         (3) 

∂T/∂t = [ρs (1 - ɛ)YQ(dX/dt) + ρa CpaVz(∂T/∂z) + ρaƒλVz(∂T/∂z)]/( ρb Cpb)    (4) 

The cells growth profile is described by the use of the Verhulst logistic equation with an 

additional physiological factor state (Φ). Both equations can be seen on Equation 5 and 6, 

respectively. 

dX/dt = µΦX(1 – X/Xm)           (5) 

dΦ/dt = γsΦ(1 - Φα) - γdΦ          (6) 

The coefficients of the physiological state are described by Equations 7 and 8. 

γs = γs0 exp[-Es /(R(T+273))]          (7) 

γd = γd0 exp[-Ed /(R(T+273))]          (8) 

The substrate consumption, ethanol, CO2 and O2 production are described by Equation 

9 to 12, respectively. 

dS/dt =YS/X dX/dt           (9) 

dP/dt =YP/X dX/dt         (10) 

dCO2/dt =YCO2/X dX/dt         (11) 

dO2/dt =YO2/X dX/dt         (12) 

1.2.  Parameter estimation problem 

The parameters were estimated to fit the model to the experimental data obtained by Mazutti 

et al. (2010). In section 1.1 the model equations were shown and the parameters chosen to be 

estimated were: µmax, Ks, k1, 𝜀, ρs, Cps, ρa, α, YS/X, YP/X, YCO2/X, YO2/X, YQ, Es, Ed, γs0 and γd0. The 

parameters values, units and descriptions can be found in Table 1. 17 parameters were estimated 

(NP=17), for 6 experiments (NE=6) measured at 25 different times (NY=25). Thus, according to 

Equation (13), 48 degrees of freedom (DF) were available for the statistical tests. 

DF=NE.NY-NE.NP           (13) 

The least squares equation was used to the parameter estimation as objective function, cf. 

Equation 14. 
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∑Fobj(X,T,S,P,CO2,O2) = min[f(x), f(T), f(S), f(P), f(CO2), f(O2)] = [║Xexp-Xmod║²,║Texp-

Tmod║², ║Sexp-Smod║², ║Pexp-Pmod║², ║CO2exp- CO2mod║²,║O2exp- O2mod║² ]   (14) 

Where the subscripts exp denotes experimental data and mod denotes modeling data. As 

smaller the objective function is the better are the parameters estimated for the model, as the 

residuals will be smaller, i.e. the difference between experimental and simulated data will be more 

likely. 

The software Matlab® function lsqnonlin was used in this work because it solves nonlinear 

least-squares problems. The chosen algorithm was Levenberg-Marquardt, which consists in an 

iterative damped least-squares method for minimization of nonlinear functions, it may be 

subjected to local minimum if a bad initial guess is given (Moré, 1977). Thus, the initial parameter 

guesses were always updated iteratively until the objective function value stops to change. 

2. MATERIAL AND METHODS 

The experimental data were obtained by Mauztti et al. (2010). The medium of the SFF 

process was sugarcane bagasse with cane molasses (10 wt%), corn steep liquor (30 wt%) and 

soybean bran (20 wt%). The yeast used was Kluyveromyces marxianus NRRL Y-7571. The 

bioreactor was a cylindrical stainless with air supplier with 95-100% of water. Inlet and outlet 

temperatures were monitored by a PT100 (NOVUS, Brazil). The microbial growth was calculated 

according to the measurements of oxygen uptake rate (Mazutti et al., 2010). Experiments were 

carried out by 24 hours with data acquisition of all state variables hour by hour. Also, temperature 

was measured at the bed inlet, 10 cm, 20 cm and 30 cm from the bed inlet and at the outlet. 

The numerical integrator used was the Dormand-Prince pair, based on a Runge-Kutta of 4th 

and 5th order, which solves non-stiff differential equations (Dormand and Prince, 1980). The 

computer used for the procedures has an Intel® Core™ i7-3770 with 3.40 GHz processor and 12 

Gb of RAM memory and it is running with the Windows 7 64 bits Operating System. 

3. RESULTS AND DISCUSSION 

As referred in item 1.2, Table 1 presents the estimated parameters obtained after several 

estimations with initial parameters guesses corrected after each estimation until the residuals 

become unalterable. The means and confidence intervals of the estimated parameters for each 

experiment dataset were computed according to Draper and Smith (1998) and Schwaab and Pinto 

(2007) works. 

Table 1 – Estimated parameters (95% of confidence) 

Parameter Substrate Inhibition Units Definitions 

µmax 0.8243±0.0438 h-1 Maximum growth rate 

Ks 0.00024±0.0149 g/L Half-velocity constant 

k1 -0.3109±0.0787 L/g Dissociation constant 

𝜀 0.9991* [-] Void fraction 

ρs 269.9952* kg.m-3 Substrate density 

Cps 2499.9575* J. kg-1.ºC-1 Heat capacity of substrate 
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ρa 0.9000* Kg.m-3 Moist air density 

α 11.0000* [-] Physiological exponent 

Yx/s 1.0241±0.0329 g/g Substrate to cells yield coefficient 

YP/x 1.0160±0.0097 g/g Cells to product yield coefficient 

Yx/O2 0.9835±0.0091 g/g Cells to [O2] yield coefficient 

Yx/CO2 0.9392±0.0140 g/g Cells to [CO2] yield coefficient 

Yq 8.3660E+06* J.kgcells
-1 Metabolic heat coefficient 

Es 6.8137E+04* J.mol-1 Activation energy for the physiological factor 

synthesis Ed 2.9451E+05* J.mol-1 Activation energy for the physiological factor 

denaturation γs0 9.7603E+08* h-1 Frequency factor for the physiological 

synthesis γd0 8.7400E+45* h-1 Frequency factor for the physiological 

denaturation * Confidence interval too narrow (< E-05). 

 

For these parameters, the objective function value, cf. Equation 14, was found to be 11.2542. 

Also, Student’s t-test and the Fisher’s exact test were performed to verify if the means and the 

variances of the models correspond to the experimental data. The test results of the Student’s t-

test, as they can be seen in Table 2, have shown that the means for the model are correspondent to 

the experimental data, because their confidence intervals intercept each other. 

Table 2 - Student’s t-test for all state variables 

 Cells Temperature Total Reduced Sugar 

Experimental 0.6237 < µ < 0.7560 0.4702 < µ < 0.5399 0.1932 < µ < 0.2943 

Model 0.5904 < µ < 0.7121 0.4346 < µ < 0.4991 0.2198 < µ < 0.3386 

 Ethanol O2 CO2 

Experimental 0.6237 < µ < 0.7560 0.6237 < µ < 0.7560 0.6237 < µ < 0.7560 

Model 0.5996 < µ < 0.7232 0.6000 < µ < 0.7237 0.6283 < µ < 0.7579 

 

Fisher’s exact test results, cf. Table 3, have shown that the limits corresponds to the 

variances ratio, denoting that, equally, they cannot be distinguished from the experimental 

variances. 

Table 3 - Fisher’s exact test for all state variables (lower limit < (Sexp²)⁄(Smod² )< upper limit) 

Cells Temperature Total Reduced Sugar 

0.6669 < 1.2184 < 1.5728 0.6669 < 0.7223 < 1.5728 0.6669 < 0.7464 < 1.5728 

Ethanol O2 CO2 

0.6669 < 1.1803 < 1.5728 0.6669 < 1.1787 < 1.5728 0.6669 < 1.0748 < 1.5728 
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3.1. Model simulations 

Model simulations were performed with the estimated parameters in order to visually 

compare the simulated data to the experimental data. Figures 1-2 show the experimental data 

versus the model only for cells growth and temperature profiles for three experiments. These 

figures show how close the model is from the process, confirming what was seen in Tables 2 and 

3. 

 

 

Figure 1 – Cells growth profile versus time for experimental and model data. 

 
Figure 2 – Temperature profile versus time for experimental and model data. 
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4. CONCLUSIONS 

According to Table 2, the state variables means cannot be distinguished between 

experimental and model data. It can be also seen on Table 3 that the variances of the model 

and the experiments are equivalent. Thus, the model with the parameters that were estimated, 

cf. Table 1, cannot be distinguished from the experimental data. In other words, the whole 

model is able to describe a solid-state fermentation using the Kluyveromyces marxianus 

NRRL Y-7571. 

Moreover, the objective function is low, considering the amount of data analyzed. 

According to the results the model has presented a good agreement with the experimental 

data. The temperature profile seems to have a minor delay, however the behavior is much like 

the experimental data. 
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