

REMOÇÃO DO CORANTE DE URUCUM PELA ENZIMA *Horseradish* peroxidase

R. E. FRANZOI $JR^1,\,S.$ FARIAS $^1,\,M.$ A. $BOTH^1,\,D.$ TODESCATO $^1,\,S.$ M. A. GUELLI U. $SOUZA^1,\,A.$ A. ULSON DE $SOUZA^1$

¹ Universidade Federal de Santa Catarina, Departamento de Engenharia Química e Engenharia de Alimentos

E-mail para contato: simonefarias2005@yahoo.com.br, augusto@enq.ufsc.br

RESUMO: Atualmente cresce a demanda pelos corantes naturais na substituição dos corantes sintéticos, por estes serem considerados mais seguros para o consumidor. O uso de enzimas para a degradação dos corantes residuais dos efluentes têxteis é considerado um processo inovador e ecologicamente correto. Assim, o objetivo deste trabalho é estudar a remoção do corante natural de urucum utilizando a enzima *Horseradish* peroxidase. O efeito dos parâmetros relevantes do processo como concentração de corante, enzima e peróxido de hidrogênio e pH foram determinados. A metodologia da superfície de resposta foi utilizada na otimização do processo de degradação do corante. As faixas ótimas de concentração de enzima e peróxido de hidrogênio foram determinadas para degradar uma solução de 550-850 mg/L de corante de urucum (bixina), na faixa de pH 4,5-7,0. Foi utilizado um limite de confiança de 95% e obtido um ajuste ao modelo de 70%.

1. INTRODUÇÃO

Atualmente em indústrias de todo mundo os corantes mais utilizados são os corantes sintéticos, principalmente pela solidez ao tingimento e por proporcionar técnicas mais reprodutíveis (HADDAR et al., 2014). Porém, quando descartados no meio ambiente esses corantes possuem a capacidade de alterar ciclos biológicos e podem resultar em um grande impacto ambiental, por suas propriedades mutagênicas e carcinogênicas (NGUEN; JUANG, 2013; KUMAR et al., 2012; KARIM; ADNAN; HUSAIN, 2012).

No decorrer dos últimos anos vem crescendo a preocupação ambiental pela utilização de produtos mais limpos, biodegradáveis e não recalcitrantes nos diversos setores industriais. Os corantes naturais derivados de plantas, insetos/animais são de fontes renováveis e com mínimo impacto ambiental, além de serem utilizados como corantes têxteis também são muito

utilizados nas indústrias de alimentos e cosméticos (MOHAMMAD; UL-ISLAM; MOHAMMAD, 2013).

Deste ponto de vista a degradação enzimática surge como uma alternativa ecologicamente correta aos métodos tradicionais de remoção de cor de efluentes têxteis. As enzimas são biodegradáveis e são muito eficientes, principalmente devido à capacidade de converter estruturas químicas complexas sob condições suaves de processo (SILVA et al., 2013). Enzimas das classes das oxidorredutases tais como peroxidase e lacase têm mostrado capacidade para degradar uma variedade de compostos orgânicos como os corantes. Estas enzimas podem catalisar a degradação de corantes, tanto por precipitação como pela quebra do anel aromático (SILVA et al., 2012).

Peroxidases são enzimas produzidas por um grande número de microrganismos e plantas que catalisam uma variedade de reações, requerendo a presença de peróxido de hidrogênio para à ação da mesma. Entre as peroxidases a mais conhecida é a *Horseradish* peroxidase, que tem sido utilizada na remoção de vários contaminantes aromáticos, principalmente porque ela mantém sua atividade sobre uma ampla faixa de pH e temperatura. Uma vez ativada pelo peróxido esta enzima atua sobre uma variedade de compostos tóxicos como fenóis, corantes, anilinas, entre outros (KARAM; NICELL, 1997; BUCHANAN; NICELL, 1998).

Este estudo avalia o uso da enzima *Horseradish* peroxidase para catalisar a degradação do corante natural de urucum através da metodologia da superfície de resposta. Ainda existem poucos trabalhos na literatura sobre a degradação de corantes naturais, sendo relevante, portanto, avaliação dos principais fatores que influenciam esse processo.

2. MATERIAIS E MÉTODOS

2.1. Corante

O corante utilizado foi o corante natural de urucum, Eq. 1 (a), que em solução alcalina, passa a ter o elemento ativo norbixina, Eq. 1 (b). A solução de corante contém hidróxido de potássio, água e urucum. As estrutura da bixina e norbixina são apresentadas na Figura 1.

Figura 1- Estrutura da (a) bixina e (b) norbixina

2.2. Atividade enzimática

A atividade inicial do extrato enzimático da *Horseradish* peroxidase doada pela empresa Toyobo foi determinada segundo a metodologia modificada de Wu et al. (1997). Para a determinação da atividade foram utilizados 0,255 mL de solução de ABTS 20 mM; 0,255 mL de peróxido de hidrogênio (H_2O_2) 10 mM; 0,300 mL de extrato enzimático 1 mM; 2,19 mL de tampão fosfato pH 6 (0,05 molL⁻¹). Todas as soluções foram preparadas em tampão fosfato pH 6. A reação foi mantida a 30 °C em banho termostatizado por 10 min e em seguida acompanhada durante 5 min, em um espectrofotômetro a 420 nm utilizando um coeficiente de extinção molar de (ε_{420nm} = 3,6x10⁴ M⁻¹. cm⁻¹). A atividade enzimática (A) foi calculada conforme a Equação 1. Onde: A= Atividade enzimática, Δ_{Abs} = Absorvância final – Absorvância inicial, V_{total} = Volume total de solução na cubeta em mL, $V_{Extrato}$ = Volume de extrato enzimático utilizado na reação em mL, V_{total} = Volume de reação em minutos.

$$A(U/mL) = \frac{\Delta_{Abs.} V_{total.} 10^{6}}{\epsilon_{ABTS.} V_{Extrato.} t}$$
 (1)

2.3. Degradação Enzimática

As reações de degradação enzimática foram conduzidas conforme metodologia modificada de Silva et al., (2012). Foram utilizados 0,4 mL de solução de H_2O_2 , 0,1 mL de extrato enzimático, 1,5 mL de corante e tampão citrato ou fosfato 0,05 mol/L (1,2 mL). As soluções de H_2O_2 e de extrato enzimático foram preparadas em tampão nos diferentes pHs estudados, a solução de corante foi preparada em água destilada. Nos controles reacionais foram empregados todos os reagentes com exceção do H_2O_2 que foi substituído por tampão. A absorvância foi medida no comprimento de onda do urucum 380 nm. A porcentagem de degradação (D) foi calculada pela equação 2.

$$\frac{D \text{ (\%)= Abs}_{\text{inicial}} - Abs}{Abs}_{\text{inicial}} .100$$
 (2)

2.4. Planejamento experimental

A degradação do corante de urucum foi realizada utilizando um planejamento fatorial estrela 2⁴ com triplicata do ponto central totalizando 27 ensaios, realizados de maneira aleatória. As variáveis analisadas foram concentração de corante, enzima, peróxido de hidrogênio e pH e como resposta foi obtida a descoloração do corante de urucum. O software utilizado foi o Statistic versão 10. As variáveis utilizadas no planejamento são apresentadas na Tabela 1.

Tabela 1- Variáveis e níveis de estudo utilizados no planejamento experimental

Variáveis		ſ			
	-2	-1	0	+1	+2
Concentração de Enzima U/mL	576,9	1153,9	1730,8	2307,7	2884,6
Concentração de H ₂ O ₂ μM	150,0	200,0	250,0	300,0	350,0
Concentração de corante mg/L	200,0	400,0	600,0	800,0	1000,0
рН	2,5	4,0	5,5	7,0	8,5

3. RESULTADOS E DISCUSSÃO

A metodologia da superfície de resposta é uma técnica de otimização de experimentos baseada em planejamentos fatoriais que pode aumentar o rendimento, reduzir a variabilidade do processo e diminuir os custos. Através da análise de todas as variáveis é possível identificar aquelas que mais influenciam no experimento e as interações entre todas as variáveis. A precisão dos modelos é avaliada pelo coeficiente de determinação R² (TAVARES et al., 2009; BALAN; SATHISHKUMAR; PALVANANN, 2012).

O planejamento realizado foi um planejamento fatorial do tipo estrela com 4 variáveis (concentração de enzima, peróxido, corante e pH), neste planejamento foram realizados 2⁴ ensaios para investigação de um modelo linear, triplicata do ponto central e mais 8 pontos axiais distribuídos rotacionalmente a uma distância do ponto central, onde +2 e -2 para investigação do modelo quadrático. Os experimentos foram realizados de forma aleatória e a resposta obtida, a degradação do corante e apresentada na Tabela 2.

Os resultados mostraram que quando foi utilizada a enzima *Horseradish* peroxidase para degradar corante natural de urucum foram obtidas degradações de 8-44%. As descolorações mínima e máxima foram obtidas com 1153,9 U/mL de enzima, 800 mg/L de corante e pH 7,0. Pode-se observar que o peróxido de hidrogênio foi determinante na descoloração, onde na concentração de 200 mM de peróxido de hidrogênio a enzima degradou 8% do corante e quando e na concentração de 300 mM foi obtida uma degradação de 44 %.

As enzimas peroxidases catalisam uma variedade de reações, porém todas requerem a presença de peróxido de hidrogênio para ativar a enzima. Vários estudos relatam a influências de fatores como peróxido de hidrogênio, concentração de corante e enzima. Silva et al., (2012) realizaram a descoloração dos corantes azo remazol laranja brilhante 3R e vermelho remazol ultra, foram obtidas degradações de 9% e 5,5 % respectivamente, esta baixa descoloração pode estar relacionada a fatores como concentração de enzima, peróxido de hidrogênio ou concentração de corante.

Tabela 2- Planejamento experimental da descoloração enzimática do corante de urucum

Ensaio	Enzima	H_2O_2	Corante	pН	Descoloração
	U/mL	mM	mg/L	_	(%)
1	1153,9	200,0	40,0	4,0	26,0
2	1153,9	200,0	40,0	7,0	9,0
3	1153,9	200,0	80,0	4,0	23,0
4	1153,9	200,0	80,0	7,0	8,0
5	1153,9	300,0	40,0	4,0	26,0
6	1153,9	300,0	40,0	7,0	28,0
7	1153,9	300,0	80,0	4,0	21,0
8	1153,9	300,0	80,0	7,0	44,0
9	2307,7	200,0	40,0	4,0	32,0
10	2307,7	200,0	40,0	7,0	14,0
11	2307,7	200,0	80,0	4,0	19,0
12	2307,7	200,0	80,0	7,0	36,0
13	2307,7	300,0	40,0	4,0	33,0
14	2307,7	300,0	40,0	7,0	13,0
15	2307,7	300,0	80,0	4,0	33,0
16	2307,7	300,0	80,0	7,0	34,0
17	576,9	250,0	60,0	5,5	22,0
18	2884,6	250,0	60,0	5,5	42,0
19	1730,8	150,0	60,0	5,5	23,0
20	1730,8	350,0	60,0	5,5	38,0
21	1730,8	250,0	20,0	5,5	34,0
22	1730,8	250,0	100,0	5,5	33,0
23	1730,8	250,0	60,0	2,5	26,0
24	1730,8	250,0	60,0	8,5	26,0
25	1730,8	250,0	60,0	5,5	39,0
26	1730,8	250,0	60,0	5,5	38,0
27	1730,8	250,0	60,0	5,5	40,0

As enzimas peroxidases catalisam uma variedade de reações, porém todas requerem a presença de peróxido de hidrogênio para ativar a enzima. Vários estudos relatam a influências de fatores como peróxido de hidrogênio, concentração de corante e enzima. Silva et al., (2012) realizaram a descoloração dos corantes azo remazol laranja brilhante 3R e vermelho remazol ultra, foram obtidas degradações de 9% e 5,5 % respectivamente, esta baixa descoloração pode estar relacionada a fatores como concentração de enzima, peróxido de hidrogênio ou concentração de corante.

Yousefi e Hamid-Reza (2010) estudaram a degradação do corante ácido laranja 7 por peroxidase do fungo *Coprinus cinereus*, sendo determinados os principais fatores que influenciam na reação enzimática, entre estes também foi identificada a concentração de peróxido de hidrogênio. Segundo Yousefi e Hamid-Reza (2010) a reação não ocorre sem adição de peróxido de hidrogênio e a taxa de descoloração inicial aumentou à medida que a concentração de peróxido de hidrogênio aumentou de 1,3 mM a 2,6 mM, mas diminui em maiores concentrações.

Na tabela 3 podem-se observar os efeitos das variáveis sobre a descoloração do corante. Na Figura 2 é apresentada a curva de nível da interação peróxido de hidrogênio (H_2O_2) e pH.

Tabela 3- Efeitos das variáveis sobre a descoloração do corante

Fator	Efeito	Erro	t student	р	Limite de confiança	
		padrão			-95%	+95%
Média/interações	39,000	4,599	8,478	0,000	28, 977	49,022
(1)Enzima (L)	5,749	3,252	1,767	0,102	-1,337	12,837
Enzima (Q)	-5,354	3,449	-1,551	0,147	-12,871	2,162
(2) H2O2 (L)	7,916	3,252	0,0315	0,031	0,830	15,004
$H_2O_2(Q)$	-6,104	3,449	0,102	0,102	-13,621	1,413
(3) Corante (L)	2,916	3,252	0,388	0,388	-4,170	10,004
Corante (Q)	-4,604	3,449	0,206	0,207	-12,121	2,913
(4) pH (L)	-2,250	3,252	0,502	0,502	-9,337	4,837
pH (Q)	-8,354	3,449	0,0322	0,032	-15,871	-0,837
1L e 2L	-5,125	3,983	0,222	0,222	-13,804	3,554
1L e 3L	2,875	3,983	0,484	0,484	-5,805	11,554
1L e 4L	-1,625	3,983	0,690	0,690	-10,304	7,054
2L e 3L	3,375	3,983	0,413	0,413	-5,304	12,055
2 L e 4 L	4,875	3,983	0,244	0,244	-3,804	13,554
3L e 4L	9,875	3,983	0,029	0,029	1,195	18,554

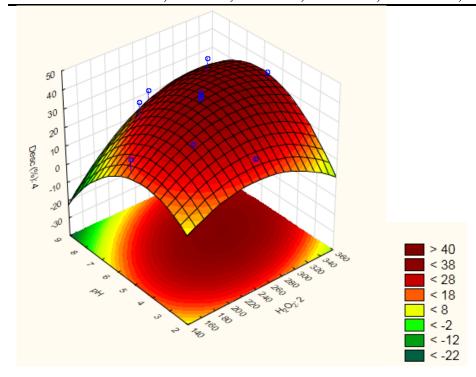


Figura 2- Curva de nível da descoloração de corante em função de pH e concentração de Peróxido.

A Figura 2 representa o efeito de diferentes concentrações de H_2O_2 e pH. As maiores descolorações do corante de urucum foram obtidas numa faixa de concentração de peróxido de hidrogênio entre 240 e 330 e uma faixa de pH entre 4,5 e 6,5. Além do peróxido de hidrogênio o pH também foi um fator significativo na reação. A máxima descoloração foi obtida em pH 7,0 porém em pH 5,5 também foi obtida uma degradação de até 42%. A interação do corante com pH também se mostrou um fator significativo para a reação. Testes preliminares mostraram que a absorbância das soluções de corante em varia com de acordo com pH. Para um limite de confiança de 95% foi obtido um ajuste ao modelo de 70%. O modelo para a descoloração do corante de urucum é representado na equação 3.

$$y = 39,00 + 3,96[H2O2] - 4,17[pH]2 + 4,94[pH].[corante]$$
 (3)

Toda enzima tem um pH característico no qual sua atividade é máxima. Com a mudança do pH as interações eletrostáticas dentro da enzima se alteram com a possibilidade de alterar a conformação tridimensional e assim sua atividade. De acordo com Cavaco e Gubits, 2003, quando o substrato se liga a enzima, esse também é influenciado pelas interações.

A maioria das enzimas tem um intervalo de tolerância determinado de pH, muitas vezes maior do que uma unidade de pH, em que sua atividade é de 80 a 100% do seu máximo. Dentro desse intervalo, o pH pode mudar sem consequências importantes para sua actividade. Mohan; Prasad; Sarma, (2005) avaliaram a descoloração do corante ácido Preto 10 BX, variando o pH de 2 a 9, a máxima degradação foi obtida em pH 2, 67%. Em pH acima de 2, o pH caiu significativamente.

4. CONCLUSÃO

A descoloração do corante de urucum pela enzima Horseradish peroxidase é influenciada pela concentração do peróxido de hidrogénio e pelo pH do meio. O corante de urucum foi degradado pela enzima com descoloração máxima de 44 %. O uso da enzima *Horseradish* peroxidase como rota para a degradação do corante natural de urucum torna este processo de tingimento mais sustentável sob o aspecto ambiental. O uso de pool enzimático pode ser uma alternativa para a melhoria da eficiência do processo.

5. REFERÊNCIAS

BALAN, K.; SATHISHKUMAR, P.; PALVANNAN, T. Decolorization of malachite green by laccase: Optimization by response surface methodology. *J. Taiwan Inst. Chem. Eng.*, v. 43, p. 776-782, 2012.

BUCHANAN, I. D.; NICELL, J. A. Kinetics of Peroxidase Interactions in the Presence of a Protective Additive. *J. Chem. Technol. Biotechnol.*, v. 72, p. 23-32, 1998.

CAVACO, P. A.; GUBITS, G.M. Textile processing with enzymes, Ed CRC, p.163, 2003

- HADDAR, W.; TICHA, M. B.; GUESMI, A.; KHOFLI, F.; DURAND, B. A novel approach for a natural dyeing process of cotton fabric with Hibiscus mutabilis (Gulzuba): process development and optimization using statistical analysis. *J. Cleaner Prod.*, v. 68, p. 114–120, 2014.
- KARAM, J.; NICELL, J. Potential applications of enzymes in waste treatment. *J. Chem. Tech. Biotechnol.*, v. 69, p. 141-153, 1997.
- KARIM, Z.; ADNAN, R.; HUSAIN, Q. A β-cyclodextrin-chitosan complex as the immobilization matrix for horseradish peroxidase and its application for the removal of azo dyes from textile effluent. *Int. Biodeter. Biodeg.*, v. 72, p. 10-17, 2012.
- KUMAR, V. V.; SATHYASELVABALA, V.; PREMKUMAR, M. P.; VIDYADEVI, T.; SIVANESAN, S. Biochemical characterization of three phase partitioned laccase and its application in decolorization and degradation of synthetic dyes. *J. Mol. Catal. B: Enzym.*, v. 74, p. 63-72, 2012.
- MOHAN, S. V.; PRASAD, K. K.; RAO, N. C.; SARMA P. N. Acid azo dye degradation by free and immobilized *Horseradish* peroxidase (HRP) catalyzed process. Chemosphere, v. 58, p. 1097–1105, 2005.
- MOHAMMAD, S.; UL-ISLAM, S.; MOHAMMAD, F. Recent advancements in natural dye applications: a review. *J. Cleaner Prod.*, v. 53, p. 310-331, 2013.
- NGUYEN, T. A.; JUANG, R-S. Treatment of waters and wastewaters containing sulfur dyes: A review. Chem. Eng. J., v. 219, p. 109–117, 2013.
- SILVA, M. C.; CORREA, A. D.; TORRES, J. A.; AMORIM, M. T. S. P. Descoloração de corantes industriais e efluentes têxteis simulados por peroxidase de nabo (*Brassica campestre*). *Quím. Nova*, v. 35, n. 5, p. 889-894, 2012.
- SILVA, M. C.; TORRES, J. A.; SÁ, L. R. V.; P; CHAGAS, P. M. B.; FERREIRA-LEITÃO, V. S.; CORRÊA, A. D. The use of soybean peroxidase in the decolourization of Remazol Brilliant Blue R and toxicological evaluation of its degradation products. *J. Mol. Catal. B: Enzym.*, v. 89, p. 122–129, 2013.
- TAVARES, A. P. M.; CRISTÓVÃO, R. O.; LOUREIRO, J. M.; BOAVENTURA, R. A. R.; MACEDO, E. A. Application of statistical experimental methodology to optimize reactive dye decolourization by commercial laccase. *J. Hazard. Mater.*, v. 162 p. 1255-1260, 2009.
- YOUSEFI, V.; HAMID-REZA, K. Statistical analysis for enzymatic decolorization of acid orange. *Int. Biodeter. Biodeg.*, v. 64, p. 245-252, 2010.
- WU, Y.; TAYLOR, K. E.; BISWAS, N.; BEWTRA, J. K. Comparison of Additives in the Removal of Phenolic Compounds by Peroxidase Catalyzed Polymerization. *Water Res.*, v. 31, p. 2699-2704, 199