COBEQ2014 XX Congresso Brasileiro de Engenharia Química

MODELAGEM E SIMULAÇÃO DE CURVAS DE RUPTURA DE ATIVIDADE QUITOSANOLÍTICA PRODUZIDA POR Paenibacillus ehimensis USANDO ADSORÇÃO EM LEITO EXPANDIDO

PADILHA, C. E. A.¹; OLIVEIRA, J. A.¹; MACEDO, G. R.¹; SANTOS, E. S.¹

¹Laboratório de Engenharia Bioquímica, Departamento de Engenharia Química,Universidade Federal do Rio Grande do Norte (UFRN)

RESUMO – Neste estudo é apresentada a modelagem matemática da adsorção de quitosanases produzidas por *Paenibacillus ehimensis* usando uma coluna de leito expandido. As corridas de adsorção foram realizadas em coluna de vidro 30,00 cm x 2,64 cm e a Streamline DEAE foi usado como adsorvente. Os experimentos foram executados em condições diferentes de concentração inicial (0,20 a 0,26 UA/mL), altura do leito fixo (5,0 e 7,5 cm) e velocidade de fluxo (80 a 240 cm/h). O modelo de taxa geral desenvolvido levou em consideração a transferência de massa, a adsorção, os efeitos hidrodinâmicos e a difusão no poro. O algoritmo metaheurístico *PSO (particle swarm optimization)* foi introduzido para estimar parâmetros cinéticos e de transferência de massa, propiciando maior ajuste do modelo. As simulações mostraram boa concordância com as curvas de ruptura experimentais, alcançando *SSR* de até 0,265, para os graus de expansão 1,00-2,60.

1. INTRODUÇÃO

As quitosanases (EC 3.2.1.132) são enzimas hidrolíticas que atuam nas ligações glicosídicas dos polímeros quitosana e quitina produzindo quitooligossacarídeos (QOS), e são expressas por uma variedade de micro-organismos, em sua maioria bactérias (Sun *et al.*, 2007; Gao *et al.*, 2008). Atualmente, já se conhece uma diversidade de benefícios relativos ao uso dos QOS devido a sua ação antitumoral (Shen *et al.*, 2009), prebiótica (Liang *et al.*, 2013), antibacteriana (Xia *et al.*, 2010). Um dos problemas da aplicação efetiva das enzimas microbianas, inclusive das quitosanases, é o alto custo envolvido na recuperação e purificação destes produtos.

A adsorção em leito expandido (ALE) é uma técnica integrativa que combina clarificação, recuperação e purificação parcial em uma única etapa, se valendo de conceitos de cromatografia e fluidização de sólidos. A alimentação da ALE pode ser efetuada com extrato bruto não tratado, uma vez que o fluxo ascendente promove a segregação das partículas adsorventes, evitando a

colmatação da coluna (Silveira *et al.*, 2009). A estabilidade da expansão do leito aproxima a ALE das características da coluna em leito fixo.

O desempenho do processo de adsorção em coluna pode ser avaliado pelas curvas de ruptura. Neste gráfico são registrados a concentração do efluente após a passagem na coluna e o tempo de corrida, revelando a saturação gradual do leito adsorvente pela molécula de interesse. A modelagem matemática da curva de ruptura torna-se, então, fundamental para entender o comportamento da adsorção e a otimização de parâmetros operacionais, sem a exigência de mais experimentos (Moraes *et al.*, 2009; Yun *et al.*, 2005).

Assim, o presente trabalho tem como enfoque a modelagem fenomenológica das curvas de ruptura de quitosanases usando a resina Streamline DEAE, um trocador aniônico. As quitosanases foram produzidas pela cepa *Paenibacillus ehimensis* e a coluna foi operada em leito fixo e leito expandido. No estudo buscou-se o ajuste das curvas de ruptura experimentais pelo auxílio da sub-rotina de estimação enxame de partículas (*Particle Swarm Optimization, PSO*).

2. EXPERIMENTAL

2.1. Produção de quitosanases

A cepa *Paenibacillus ehimensis* NRRL 23118 foi usada na produção de quitosanases. O concentrado celular, armazenado a 10 % v/v glicerol, foi transferido a Erlenmeyers de 250 contendo 50 mL do meio A $(1,0 \text{ g.L}^{-1} \text{ peptona}, 1,0 \text{ g.L}^{-1} \text{ extrato}$ de levedura, 0,5 g.L⁻¹ sulfato de magnésio, 1,0 g.L⁻¹ fosfato dibásico de potássio, 2,0 g.L⁻¹ glicose, pH 7,0) e incubados a 309 K e 120 rpm durante 24 h. Alíquotas do meio A (5 mL) foram inoculadas em 45 mL do meio B (6,0 g.L⁻¹ peptona, 0,5 g.L⁻¹ sulfato de magnésio, 1,0 g.L⁻¹ fosfato dibásico de potássio, 1,0 g.L⁻¹ glicose, 3,0 g.L⁻¹ quitosana, pH 7,0). A produção foi realizada em *shaker* durante 48 h, nas mesmas condições do cultivo anterior (Araújo *et al.*, 2013). O produto foi armazenado em freezer a 253 K, acrescido de 0,05 % de azida de sódio.

2.2. Coluna e adsorvente

Uma coluna de vidro com diâmetro 2,64 cm e altura de 30,00 cm foi confeccionada para operar em leito expandido. Um pistão móvel foi utilizado para permitir diferentes graus de expansão do leito e o distribuidor consistia de um leito de microesferas de vidro com altura de 3,0 cm. A alimentação da coluna foi realizada por uma bomba peristáltica (Perimax 12, Spetec). A resina utilizada nos ensaios de adsorção foi a Streamline DEAE (GE Healthcare, Uppsala, Sweden), um trocador aniônico da primeira geração de adsorventes próprios para adsorção em leito expandido.

2.3. Purificação de quitosanases

Em cada ensaio a coluna foi equilibrada com tampão Fosfato 50,0 mM e pH 8,0 e, em seguida, fez-se passar 200,0 mL de caldo fermentado clarificado com pH 8,0. As alturas do leito fixo de 5,0 e 7,5 cm foram selecionadas e as velocidades de fluxo variaram de 80 cm/h a 240 cm/h. As corridas foram realizadas em leito fixo ($H/H_0 = 1$) e em leito expandido ($H/H_0 = 1,80$, $H/H_0 = 2,20$ e $H/H_0 = 2,60$) na temperatura de 25°C. A concentração de atividade quitosanolítica

foi analisada na alimentação e na saída da coluna.

2.4. Determinação da atividade quitosanolítica

A atividade enzimática foi determinada através dos passos realizados em Araújo *et al.* (2013). A formação de açúcares redutores foi analisada pelo método DNS (Miller, 1959), usando D-glicosamina (Sigma Aldrich, Ohio, USA) como padrão. Uma unidade de atividade de quitosanase (1 UA) foi definida como a quantidade de enzima capaz de formar 1 µmol de D-glicosamina por minuto nas condições estabelecidas.

3. MODELO MATEMÁTICO

O desenvolvimento do modelo matemático para o processo de adsorção de quitosanases em colunas de leito fixo e de leito expandido necessitou da definição de algumas hipóteses:

i. O adsorvente foi considerado como uma esfera de densidade uniforme e grupos funcionais igualmente distribuídos. O tamanho das partículas seguiu uma distribuição axial definida por Tong e Sun (2002). O leito adsorvente apresentou empacotamento homogêneo.

ii. O adsorvente foi adotado como um material poroso, no qual o adsorbato pode difundir-se livremente. Representou-se a difusão intraparticular pelo termo de difusividade efetiva (D_{ef}) .

iii. O comportamento hidrodinâmico da fase líquida foi representado pelo modelo de dispersão axial.

iv. A transferência de massa na superfície do adsorvente foi governada pelo coeficiente de transferência no filme líquido (k_f) .

v. O equilíbrio de adsorção foi representado pelo modelo de Langmuir como visto na Equação 1, onde a concentração de atividade enzimática no poro (c^*) está em equilíbrio local com a atividade retida nas paredes do adsorvente (q^*). Os parâmetros λ e 1/b são a capacidade máxima de adsorção das quitosanases e o coeficiente de adsorção, respectivamente.

$$q^* = \frac{\lambda bc^*}{1 + bc^*} \tag{1}$$

O balanço de massa na fase fluida em um elemento de volume da coluna pode ser expresso pela Equação 2.

$$\frac{\partial c}{\partial t} = D_{ax} \frac{\partial^2 c}{\partial z^2} - \frac{u}{\varepsilon} \frac{\partial c}{\partial z} - \frac{3k_f (1 - \varepsilon) (c - c_f)}{\varepsilon R_i}$$
(2)

$$t = 0; \ c(z,0) = 0 \ para \ 0 \le z \le H$$
 (3)

$$z = 0; \quad c = c_0 + \frac{(1 - \varepsilon)D_{ax}}{u} \frac{\partial c}{\partial z} \quad para \quad t > 0$$
(4)

$$z = H; \quad \frac{\partial c}{\partial z} = 0 \quad para \quad t > 0 \tag{5}$$

Na fase sólida, a dispersão se insere em termos da quantidade de atividade enzimática adsorvida, gerando a Equação 6 (Wright e Glasser, 2001; Tong *et al.*, 2003).

$$(1-\varepsilon)\frac{\partial \bar{q}}{\partial t} = D_s \frac{\partial^2 \bar{q}}{\partial z^2} + \frac{3k_f (1-\varepsilon)(c-c_f)}{R_i}$$
(6)

$$t = 0; \ \bar{q}(z,0) = 0 \ para \ 0 \le z \le H$$
 (7)

$$z = 0; \quad \frac{\partial \bar{q}}{\partial z} = 0 \quad para \quad t > 0 \tag{8}$$

$$z = H; \ \frac{\partial \bar{q}}{\partial z} = 0 \ para \ t > 0 \tag{9}$$

Quando se utiliza adsorventes porosos em processos de adsorção é importante a inclusão do modelo de dispersão do poro (*PDM*) (Wright e Glasser, 2001; Tong *et al.*, 2003; Yun *et al.*, 2005), conforme a Equação 10.

$$\varepsilon_p \frac{\partial c_i}{\partial t} = \frac{\partial q_i}{\partial t} + \varepsilon_p D_{ef} \left(\frac{\partial^2 c_i}{\partial r^2} + \frac{2}{r} \frac{\partial c_i}{\partial r} \right)$$
(10)

$$t = 0; \ c = c_0; \ c_i = 0; \ q_i = 0 \tag{11}$$

$$r = 0; \ \frac{\partial c_i}{\partial r} = 0 \quad para \ t > 0 \tag{12}$$

$$r = R; \ \frac{\partial c_i}{\partial z} = \frac{R}{3\varepsilon_p D_{ef}} \frac{\partial q}{\partial t} \ para \ t > 0$$
(13)

A otimização por enxame de partículas é um algoritmo de busca estocástico inspirado na movimentação de pássaros em busca de alimento. Cada elemento ou partícula do enxame procura a melhor solução baseado na melhor posição encontrada por ele próprio e pelo conjunto de partículas. As partículas se movem pelo intervalo de busca e trocam informações com as outras partículas, de acordo com as Equações 14 e 15 (Burkert *et al.*, 2011).

$$v_{p,d}^{k+1} = w \cdot v_{p,d}^{k} + c_1 \cdot r_1 \left(x_{p,d}^{ind} - x_{p,d}^{k} \right) + c_2 \cdot r_2 \left(x_d^{glob} - x_{p,d}^{k} \right)$$
(14)

$$x_{p,d}^{k+1} = x_{p,d}^k + v_{p,d}^{k+1}$$
(15)

Nas Equações 14 e 15, *p* representa a partícula, *d* é a direção de busca, *k* é o número de iterações, *v* é a velocidade da partícula, *x* é a posição da partícula, x^{ind} é a melhor posição da partícula e x^{glob} é a melhor posição encontrada pelo enxame. Os termos r_1 e r_2 são dois números randômicos que se distribuem entre 0 e 1. Os parâmetros *w*, c_1 e c_2 tratam-se do peso inercial, parâmetro de cognição e parâmetro social, respectivamente.

As simulações do modelo de taxa geral foram realizadas usando a linguagem Fortran, no software Microsoft Visual Studio 2010. O método de diferenças finitas foi usado para as discretizações nas coordenadas espaciais $z \in r$, sendo adotados trinta pontos em cada caso. Os balanços diferenciais descritos nas Equações 2, 6 e 10 foram resolvidos pela rotina DASSL IMSL. No algoritmo *PSO* foram usadas 20 partículas e 20 iterações; o peso inercial e os parâmetros de cognição e social foram fixados em 0,7, 1,0 e 1,0, respectivamente. Os intervalos de busca do *PSO* para os parâmetros do modelo foram: $\varepsilon \in [0,5; 0,9]$, $D_{ax} \in [1.10^{-9}; 1.10^{-4}]$, $D_s \in [1.10^{-9}; 1.10^{-4}]$, $k_f \in [1.10^{-12}; 1.10^{-6}]$, $D_{ef} \in [1.10^{-12}; 1.10^{-6}]$, $\lambda \in [0,1; 50]$, $b \in [0,1; 10]$.

4. RESULTADOS E DISCUSSÕES

O uso de correlações para determinação de parâmetros cinéticos e hidrodinâmicos é uma prática bem comum na modelagem de processos de adsorção, entretanto, há situações em que esta prática torna-se falha, como, por exemplo, a aplicação de extrato bruto para adsorção para quitosanases (Moraes *et al.*, 2009). Para tanto, o emprego de uma rotina de estimação de parâmetros (como o *PSO*) é importante para contornar estes obstáculos.

A Figura 1 mostra as curvas de ruptura experimentais e simuladas, além das variáveis operacionais: concentração de alimentação, altura do leito sedimentado e velocidade de fluxo. As curvas de ruptura experimentais diferem entre si, principalmente por causa da velocidade de fluxo, e se assemelham a uma função sigmoidal (*S-shape*). Os parâmetros do modelo estimados pelo *PSO* estão dispostos na Tabela 1 e foram usados para simular a adsorção das quitosanases. Nota-se pela Tabela 1 que o estimador também conseguiu reconhecer as tendências de alguns parâmetros como a dispersão axial, o coeficiente de transferência de massa, a capacidade máxima de adsorção, a constante de adsorção e, principalmente, a porosidade do leito.

Os dados experimentais e simulados foram comparados mediante a soma quadrática residual (*SSR*), conforme a Equação 16. Através deste cálculo observa-se uma boa concordância entre as curvas experimentais e simuladas, apesar do afastamento considerável nas regiões $C/C_0<0,2$. Os valores de *SSR* foram iguais a 0,461, 0,265, 0,487 e 0,373 para os casos A, B, C e D, respectivamente.

$$SSR = \left(\frac{C}{C_0} - \frac{exp}{C_0} - \frac{calc}{C_0}\right)^2$$
(16)

Outro paralelo entre as curvas de ruptura experimentais e simuladas foi realizado a partir da eficiência do processo, como se pode observar na Equação 17. A Tabela 2 mostra os valores da eficiência do processo provenientes das curvas de ruptura experimentais e simuladas nas quatro situações testadas. Neste trabalho a eficiência do processo foi calculada quando a concentração de

saída atingiu 15 % da concentração inicial. Nos casos do leito fixo (A) e do leito expandido na velocidade 160 cm/h (C) a função eficiência experimental e calculada foram próximas, nos casos B e D, em contrapartida, elas foram bem diferentes. Este afastamento foi causado provavelmente por instabilidades na expansão do leito durante o ínicio das corridas, o que provocou saídas C/C_0 mais elevadas do que na curva simulada.

Figura 1 – Curvas de ruptura da adsorção de quitosanases em leito fixo (A) e expandido (B, C e D). Os pontos (■) são os dados experimentais. As linhas contínuas (—) são os dados simulados.

Parâmetros	Simulação A	Simulação B	Simulação C	Simulação D
ε _L	0,549	0,628	0,809	0,832
$D_{ax} (10^{-5} \text{ cm}^2/\text{s})$	0,446	1,198	0,260	6,466
$k_{\rm L} (10^{-6} {\rm cm/s})$	1,618	5,835	5,271	9,648
$D_{sol} (10^{-8} \text{ cm/s})$	3,104	20,735	3,805	9,655
$D_{ef} (10^{-8} \text{ cm}^2/\text{s})$	6,244	20,912	1,117	8,810
λ (UA/g)	26,661	25,272	29,703	36,014
b (mL/UA)	4,301	3,092	4,996	4,493

Tabela	1 – 1	Parâmetros	estimados	pelo	algoritmo	PSO	nas c	matro	simulac	:ões
1 abora	1 1	aramenos	connados	pero	argonnino	1 00	mas c	Juano	Simulaç	000

Tabela 2 – Eficiência experimental e calculada para a adsorção de quitosanases em colunas de leito fixo e expandido.

Eficiência	Α	В	С	D
$\phi_{15\%}^{\exp}(\%)$	72,85	39,62	61,59	33,79
$\phi_{15\%}^{calc}(\%)$	75,59	87,62	64,58	88,94

5. CONCLUSÃO

O objetivo do trabalho foi elaborar um modelo de taxa geral para simular as curvas de ruptura de quitosanases produzidas por *Paenibacillus ehimensis* em Streamline DEAE, se valendo da ferramenta de estimação de parâmetros *PSO*. Como desejado, as curvas de ruptura experimentais demonstraram um comportamento semelhante a uma sigmóide, o que facilitou a tarefa do modelo. O estimador *PSO* organizou adequadamente cada conjunto de parâmetros a uma situação específica, possibilitando curvas de ruptura simuladas próximas das curvas de ruptura experimentais. Enfim, mostra-se válido o uso de rotinas de estimação na modelagem matemática de sistemas ALE para recuperação de quitosanases.

REFERÊNCIAS

ARAÚJO, N. K.; ASSIS, C. F.; SANTOS, E. S.; MACEDO, G. R.; FARIAS, L. F.; JÚNIOR, H. A.; PEDROSA, M. F. F.; PAGNONCELLI, M. G. B. Production of Enzymes by *Paenibacillus chitinolyticus* and *Paenibacillus ehimensis* to Obtain Chitooligosaccharides. *Applied Biochemistry and Biotechnology*, v. 170, p. 292-300, 2013.

BURKERT, C. A. V.; BARBOSA, G. N. O.; MAZUTTI, M. A.; MAUGERI, F. Mathematical modeling and experimental breakthrough curves of cephalosporin C adsorption in a fixed-bed column. *Process Biochemistry*, v. 46, p. 1270-1277, 2011.

GAO, X. -A; JU, W. -T.; JUNG, W. –J.; PARK, R. –D. Purification and characterization of chitosanase from *Bacillus cereus* D-11. *Carbohydrate Polymers*, v. 72, p. 513-520, 2008.

LIANG, T. -W.; LIU, C. -P.; WU, C.; WANG, S. -L. Applied development of crude enzyme from *Bacillus cereus* in prebiotics and microbial community changes in soil. *Carbohydrate Polymers*, v. 92, p. 2141-2148, 2013.

MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing Sugar. *Anal. Chem*, v. 31, 3, p. 426-428, 1959.

SHEN, K. -T.; CHEN, M. -H.; CHAN, H. -Y.; JENG, J. -H.; WANG, Y. -J. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. *Food and Chemical Toxicology*, v. 47, p. 1864-1871, 2009.

SILVEIRA, E.; SOUZA-JÚNIOR, M. E.; SANTANA, J. C. C.; CHAVES, A. C.; PORTO, A. L. F.; TAMBOURGI, E. B. Expanded bed adsorption of bromelain (E.C. 3. 4.22.33) from *Ananas comosus* crude extract. *Brazilian Journal of Chemical Engineering*, v. 26, 2009.

SUN, Y.; HAN, B.; LIU, W.; ZHANG, J.; GAO, X. Substrate induction and statistical optimization for the production of chitosanase from *Microbacterium sp.* OU01. *Bioresource Technology*, v. 98, p. 1548-1553, 2007.

TONG, X. -D.; SUN, Y. Particle size and density distributions of two dense matrices in an expanded bed system. *Journal of Chromatography A*, v. 977, p. 173-183, 2002.

TONG, X. –D.; XUE, D.; SUN, Y. Modeling of expanded bed protein adsorption by taking into account the axial particle size distribution. *Biochemical Engineering Journal*, v. 16, p. 265-272, 2003.

WRIGHT, P. R.; GLASSER, B. J. Modeling Mass Transfer and Hydrodynamics in Fluidized-Bed Adsorption of Proteins. *AIChE Journal*, v. 47, 474-488, 2001.

XIA, W. S.; LIU, P.; ZHANG, J. L.; CHEN, J. Biological activities of chitosan and chitooligossacharides. *Food Hydrocolloids*, v. 25, p. 170-179, 2010.

YUN, J.; LIN, Q. -X.; YAO, S. –J. Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds. *Journal of Chromatography A*, v. 1095, p. 16-26, 2005.