
NEURAL  NETWORK  MODEL  FOR  PREDICTION  OF  THE 
PERMEATE FLUX OF MACROMOLECULAR SOLUTIONS WITH 
GUAR  AND  XANTHAN  GUMS  IN  CROSSFLOW 
MICROFILTRATION PROCESSING

E. R. FILLETTI1, J. M. SILVA2

1 Department of Physical Chemistry, Institute of Chemistry, São Paulo State University - UNESP, 
Araraquara - SP, Brazil

2 Institute of Science and Technology, Federal University of Alfenas - UNIFAL, 
Poços de Caldas - MG, Brazil

                                                   E-mail address: erica@iq.unesp.br

RESUMO – The purpose of this research work is to develop an artificial neural network 
model that predicts the permeate flux of macromolecular solutions with guar and xanthan 
gums in ceramic membrane of nominal pore size of 0.2 μm and 0.4 μm to two different 
temperatures.  The neural network has been trained through a selected set of experimental 
data  already published.  The  experimental  data  were  obtained  for  the  concentration  in 
turbulent flow. Few experimental series were considered to construct a database applied to 
neural model parameters that could be adjusted. The input variables of neural model were 
temperature, nominal pore size and microfiltration time. The results show that the neural 
model  can be trained in a reasonable computational  time and it  is able to predict  real 
values of the permeate flux.

 
1. INTRODUCTION 

Cross flow membrane filtration technology has been used widely in industry globally. During 
filtration  processes,  fouling  is  the  main  problem causing  loss  of  productivity.  Indeed,  it  reduces 
equipment efficiency with permeate flux decline, increases production cost by repetitive cleaning and 
can induce contamination problems due to the growth of microorganisms at the membrane surface. 
Therefore, extensive studies of the characterization of fouling have been several researchers.  Most of 
the studies have focused on the evolution of permeate flux.  Evaluating parameters related with the 
transport phenomena, often request complex mathematical equations with adjustable parameters that 
are  difficult  to  determine  experimentally  and  the  analytical  solution  cannot  be  obtained.  In  this 
context, artificial neural networks (ANNs) have attracted attention as new approach for determining 
complex relationships between input and output variables on analysis of experimental data. 

ANNs have several advantages that make them attractive tools: they can be trained to learn 
from examples; are easily updated and generalized; possess a large degree of freedom and accurate 
prediction at high speed (Nafey, 2009, Valle and Araujo, 2011, Niemi,  et al., 1995). ANNs possess 

Área temática: Engenharia das Separações e Termodinâmica 1

mailto:erica@iq.unesp.br


the ability to identify a relationship from given patterns and this makes it possible to solve large-scale 
complex problems. As a consequence, several researchers have devoted to study the application of 
neural networks models in crossflow filtration process.  Razavi, et al., 2004 applied neural networks 
for the dynamic simulation of permeate flux and total hydraulic resistance. The methodology was 
used to the case of milk concentration by crossflow ultrafiltration as a function of physicochemical 
conditions (pH and fat per cent). The results were satisfactory with average error less than 1.06%. 
Curcio, et al., 2006 presented ANN methodology for the control of permeate flux decay, on the basis 
of the experimental results collected,  during ultrafiltration of BSA solutions. Liu,  et al.,  2009 used 
ANN models to predict the performance of microfiltration systems for water treatment. Five input 
variables were used in order to construct a database for development neural model to predict and/or 
simulate membrane fouling behavior. Guadix,  et al., 2010 develop an ANN that predicts the time 
evolution of the milk permeate flux through a ceramic membrane submitted to operational cycles of 
filtration and cleaning with different degrees of aggressivity. The results show satisfactory with an 
error of 10%. Authors as Niemi et al.  1995, Shetty et al. 2003, Curcio et al. 2005, Chellam (2005), 
Shahoo and Ray (2006),  Silva  and Flauzino  (2008)  and Hilal  et  al.  2008 also  worked with  the 
applicability of ANNs to describe membrane processes.

In order to obtain a tool to estimate parameters of crossflow filtration process, the aim of this 
research is to investigate the possibility of using a neural network to predict the permeate flux. In 
particular,  ANN  was  developed  to  estimate  the  permeate  flux  during  the  microfiltration  of 
macromolecular solutions with guar and xanthan gums in turbulent flow with ceramic membrane of 
nominal pore size of 0.2 μm and 0.4 μm to two different temperatures, 25oC and 40oC. The database 
for  development  neural  model  was  obtained  by  experimental  data  of  the  literature  (Queiroz  and 
Fontes, 2008). The results obtained by the artificial neural network have shown to be satisfactory, with 
average error of 6%.

2. EXPERIMENTAL DATA

As previously mentioned,  the experimental  method and data  set  used in  this  research were 
described by Queiroz and Fontes (2008). In order of elucidate, in this section, a brief summary of the 
method is  reported.  Figure 1 shows a  schematic  drawing of  the experimental  equipment  used to 
analyze the concentration process by microfiltration. The experimental system was manufactured by 
Netzsch do Brazil Ltda, with one ceramic tube module 1000 mm (4, Figure 1) long, 7 mm diameter 
each a surface area of 0.022 2m . The solution in the feed tank (1, Figure 1) was made to circulate 
using a positive-displacement pump (2, Figure 1) and the transmembrane pressure was maintained 
constant  by a frequency in versor. The retention flux was returned to the feed tank,  whereas the 
permeate outflow was volumetrically measured (5, Figure 1) as a function of time (Fontes,  et al., 
2005). The commercial ceramics membranes used in this research has nominal pore size of  0.2 μm 
and 0.4 μm . The transmembrane pressure was measured with a manometer before the module at 300 
kPa. The concentrations used were: 750 ppm of xanthan gum with 250 ppm of guar gum. 
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Figure 1. Schematic drawing of the experimental apparatus: (1) jacketed fluid container; (2) 
pump; (3) flowmeter; (4) covering module with membrane; (5) permeate outflow.

3. NEURAL NETWORK ALGORITHM IMPLEMENTATION 

In this work it is used a feed forward network, i.e., the input of a specific layer is formed only 
by the values of the preceding layer. The architecture of such a network is composed of an input 
layer,  a certain number of hidden layers and an output layer in forward connections, as shown in 
Figure 2.  Each neuron in the input layer represents a just single input parameter. These values are 
directly transmitted to the subsequent neurons of the hidden layers.  The neurons of the last layer 
represent the ANN's outputs.

Figure 2:  Representation of a feed forward neural network. 
The output ,i jy  of neuron i in a layer j is calculated as
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neural network, in this work, were the tangent sigmoid in the hidden layers and a linear function in the 
output layer, expressed respectively as
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, ,( )i j i jf v v=                                                                                                                                (4) 

The training process in the ANNs involves presenting a set of examples (input patterns) with 
known outputs (target output) (Jenkins, 1997). The system adjusts the weights  , ,k i jw  of the internal 
connections  to  minimize  errors  between the  network output  and target  output.  The knowledge is 
represented and stored by the weights of the connections between the neurons.

Back  propagation  is  probably  the  most  used  training  algorithm  and  it  is  particularly  well 
adapted to feed-forward architecture of the multi-layer network. It is based on the iterative application 
of a discrete gradient descent algorithm, designed to compute the connection weights minimizing the 
total mean-square error between the actual output of the network and the target output.  In general, the 
back  propagation  algorithm,  which  is  implemented  in  this  work,  can  be  summarized  as  follows 
(Hayhin, 1999):

(i) initialize the ANN's parameters ,i jb  and , ,k i jw  with random numbers;

(ii) calculate the outputs of all the neurons of layer by layer, starting with the input layer until 
the output layer using Equations (1) – (4);

(iii) calculate the mean square error by:
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where iy  is the actual output of the i-th output node, id  is the corresponding desired output and N is 
the number of output nodes;

(iv) calculate the derivatives of the error with respect to ,i jb and , ,k i jw ;

(v)  update  the  weights  and  bias  along the  negative  gradient  of  the  MSE  and  a  specified 
learning rate γ
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(vi) repeat by going to step 2, successively modifying ,i jb  and , ,k i jw , up to a certain number of 
epochs to be achieved or until MSE  is sufficiently small.

The neural  network  implemented  in  this  work  has  three  inputs  and  one  output.  Various 
architectures were trained and tested. The neural model that had the best result, obtained by trial and 
error, has two hidden layers with six and three neurons, respectively.

The training procedure comprehended the acquisition time,  temperature and pore size (input 
patterns) obtained as described in section previous.  Thirty-six examples of data were considered to 
construct a database applied to ANN parameters that could be adjusted. The error of the training was 
the order of 410− , as shown in Figure 3. The neuron of the output layer is responsible for estimating 
the permeate flux ( J ).

Figure 3: Decrease of the error during the training of the ANN.

To determine the values of the learning rate, the number of epochs as well as the number of 
neurons in the intermediate layers of the neural networks, an optimization of the parameters of the 
neural networks was performed by trial and error, in an attempt to diminish the error in a reasonable 
time. The learning rate used in the neural network was 0.1 and the training time was approximately 2 
hours and 350000 epochs were performed during the training.  For the generalization, 12 examples 
different from those used in the training were presented to the neural network. The division of the 
examples  in  training  and  test  sets  was  made  randomly  and  was  obtained  a  good  coefficient  of 
correlation among the data. 

4. RESULTS AND DISCUSSION

To evaluate the generalization capacity of ANN, new experimental data were presented to the 
neural  networks.  It  is  good  to  emphasize  that  these  data  were  unknown  to  the  ANN.  A good 
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correlation among the input and output data could be observed for the test set. 

Figures  4  and  5  show comparison  of  the  data  obtained  experimentally  Queiroz  and  Fontes 
(2008) with of the results calculated by neural network, concerning the examples contained in the test 
set, for the average permeate flux of mixture in suspension of guar and xanthan gum as a function of 
the time. The ANN results presented in this figure showed good agreement with the experimental data 
with average relative error equal to 0.7% and 2.6% in the case of membrane pore size of 0.2 μm and 
temperature of 25ºC (Fig. 4a) and 40 ºC (Fig. 4b), 19% and 1.2% in the case of membrane pore size of 
0.4 μm and temperature of 25 ºC (Fig. 5a) and 40 ºC (Fig. 5b).

                                         (a)                                                                  (b)              

  

Figure 4: Average permeate flux as function of the time membrane pore size of  0.2 μm : (a) 
temperature equal to 25 ºC; (b) temperature equal to 40 ºC.

                                         (a)                                                                  (b)        

Figure 5: Average permeate flux as function of the time membrane pore size of  0.4 mµ : (a) 
temperature equal to 25 ºC; (b) temperature equal to 40 ºC.

Figure 6 shows the line that best approximates the values obtained by the neural model whose 
equation is 1.27 0.93y x= − . As can be observed, the results obtained by ANN for the test examples 
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are  satisfactory,  with  a  Pearson  correlation  2 0.9R =  and  an  average  relative  error  of  6%  was 
observed. These results indicate that the training of the proposed neural model has been successfully 
performed. 

Figure 6: Best linear fit for values of the average permeate flux estimated by the ANN ( ANNJ ) 
and the experimental data ( EXPJ ) membrane pore size of  0.2 μm  and 0.4 μm.

5. CONCLUSIONS

Artificial  neural model was trained with experimental  data in order to determine  the average 
permeate flux in the crossflow membrane microfiltration process. To construct a database, a small 
number of examples were used, from which the ANN parameters (weights and biases) were adjusted. 
A model was developed to map the parameters time, temperature and pore size membrane with the aim 
of estimating the  permeate flux.  The results of the artificial neural network were satisfactory,  as it 
showed to be capable of estimating the values of the permeate flux of mixtures for examples that were 
not presented to it in the training, with average error of 6%. 

The  simplicity  and  efficiency  of  the  developed  neural  approach  indicates  that  the  proposed 
methodology  can  be  used  as  an  efficient  method  to  estimate  parameters  related  to  the  crossflow 
membrane microfiltration process.
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