

CÁLCULO DE DISPONIBILIDADE EM SIMULADOR DE PROCESSOS

A. M. AVELAR¹, F. W. TAVARES²

 ¹ Marinha do Brasil, Diretoria de Abastecimento da Marinha, Departamento Técnico
² Universidade Federal do Rio de Janeiro, Escola de Química, Departamento de Engenharia Química

E-mail para contato: aolbr_mail@yahoo.com.br

RESUMO - O cálculo da exergia em correntes materiais e de energia foi implementado no simulador de processos Aspen HYSYS®. Para cada tipo de operação ou processo unitário foram programados os cálculos de irreversibilidade e de eficiência. As rotinas de programação foram validadas a partir de comparações com resultados encontrados na literatura. Nos exemplos analisados, critérios termoeconômicos e ambientais foram considerados, e os resultados demonstraram que a eficiência racional, diretamente relacionada ao índice de sustentabilidade do processo, consegue lidar com a ordem de grandeza da escala completa de disponibilidade. Além disso, atribuição de custos exergéticos na formulação do custo real dos produtos pode ser utilizada para mensurar, de maneira extensiva, o impacto ambiental e avaliar a viabilidade econômica de tecnologias sustentáveis.

1. INTRODUÇÃO

Entende-se por exergia de uma dada corrente material, o trabalho máximo que se pode obter levando-se uma dada corrente ao estado de equilíbrio com o ambiente, por um processo reversível. A disponibilidade de energia, ou simplesmente exergia, é destruída devido as irreversibilidades dos processos. A análise de disponibilidade, ou exergética, permite a avaliação de processos, sob o ponto de vista da segunda lei da termodinâmica, baseada em uma escala cujo estado de referência é o meio ambiente (Kotas., 1985).

A maioria dos simuladores de processos existentes no mercado: Aspen HYSYS®, Aspen Plus®, ProII®, EMSO/VRTHERM, não realizam o cálculo de disponibilidade em seus pacotes termodinâmicos. Diversos trabalhos iniciaram as implementações do cálculo da exergia em simuladores de processo (Montelongo-Luna, 2007; Abdollahi-Demneh *et al.*, 2011; Ghannadzadeh *et al.*, 2012). O trabalho de Ghannadzadeh *et al.* (2012) faz uma revisão da literatura, comparando as implementações em simuladores de processos. O presente trabalho objetiva estender a implementação de Abdollahi-Demneh *et al.* (2011), aplicando também o cálculo da exergia de correntes de energia, cálculo da eficiência racional de operações unitárias de acordo com Ghannadzadeh *et al.* (2012), avaliação termoeconômica e ambiental de acordo com Valero *et al.* (1993) e Rosen *et al.* (2008).

2. IMPLEMENTAÇÃO

O procedimento proposto por Abdollahi-Demneh *et al.*, (2011) consiste em um método direto, sem repetições de programação, para o cálculo da exergia de uma corrente de processo, implementada através de código em Visual Basic no programa simulador de processos Aspen HYSYS®.

A escala de disponibilidade utiliza como referência um estado denominado de "morto", haja vista que, a partir dele, não é possível produzir trabalho. O estado morto de referência aqui adotado, foi sugerido por Szargut *et al.* (1988), conforme descrito na Tabela 1, pois, também fora utilizado em diversos trabalhos recentes (Montelongo-Luna, 2007; Abdollahi-Demneh *et al.*, 2011; Ghannadzadeh *et al.*, 2012).

Temperatura (T ₀₀)	298,15 K
Pressão (P ₀₀)	99312 Pa
Componente	Pressão parcial (Pa)
N_2	75780
O_2	20390
CO_2	33,5
H ₂ O	2200
D_2O	0,342
Ar	906
Xe	0,0087
Ne	1,77
Kr	0,097
He	0,485

Tabela 1 - Estado morto de referência proposto por Szargut et al. (1988).

A exergia física de uma corrente material corresponde ao trabalho obtido levando-se a corrente do seu estado inicial de temperatura e pressão até as condições de temperatura e pressão do ambiente, por meio de um processo reversível. Corresponde a Etapa 1 da Figura 1.

A exergia química de uma corrente material corresponde ao trabalho obtido pela transformação química da composição de uma unidade de massa da corrente, nas condições de temperatura e pressão do ambiente, até o equilíbrio completo com o meio ambiente, em termos de composição inclusive. O procedimento proposto por Abdollahi-Demneh *et al.* (2011) utiliza o método proposto por Szargut *et al.* (1988) para o cálculo da exergia química, sendo divido em quatro etapas, aqui nomeadas de Etapas 2, 3, 4 e 5.

Na Etapa 2, todas as substâncias contidas na mistura nas condições ambiente de temperatura e pressão ($T_0 e P_0$) são conduzidas ao seu estado de gás ideal e substância pura,

na mesma condição de temperatura (T_0) e na condição de pressão de referência do simulador (P_{0n} =101325 Pa). Os autores Abdollahi-Demneh *et al.* (2011) utilizam a expressão do calor específico dos componentes ideais puros, implementada no próprio programa para cálculo da entalpia e entropia dos componentes.

Na Etapa 3, todas as substância puras; exceto aquelas que não possuem espécie química de referência, como por exemplo, hidrocarbonetos halogenados; são convertidas por reações reversíveis, conforme a Equação 1, na temperatura ambiente (T_0) e na pressão de referência do simulador (P_{0n} =101325 Pa), dando origem as espécies de referência do estado morto.

$$X_{i} + \upsilon_{i1}O_{2} \leftrightarrow \upsilon_{i2}CO_{2} + \upsilon_{i3}H_{2}O + \upsilon_{i4}N_{2} + \upsilon_{i5}Ar + \upsilon_{i6}Xe + \upsilon_{i7}Ne + \upsilon_{i8}Kr + \upsilon_{i9}He + \upsilon_{i10}D_{2}O + \upsilon_{i11}S_{(solido)}$$
(1)

Na Etapa 4, as pressões parciais das substâncias de referência são alteradas da condição de substância pura na pressão de referência do simulador ($P_{0n} = 101325$ Pa), para as pressões parciais do estado morto de referência da Tabela 1, de maneira reversivel e isotérmica, uma vez que a temperatura do estado morto de referência ($T_{00} = 298,15$ K) definido por Szargut, *et al.* (1988) é a mesma temperatura ambiente ($T_0 = 298,15$ K). É válido ressaltar que a pressão total do estado morto de referência é $P_{00} = 99312$ Pa, sendo necessário uma etapa posterior para corrigir a exergia ao estado morto real. Para o caso específico do enxofre sólido rômbico, recomenda-se o cálculo deste componente com base no íon sulfato dissolvido na água do mar, sendo $\Delta B_s = 609,6$ J/kgmol . (Abdollahi-Demneh *et al.* 2011)

Na Etapa 5, as pressões parciais das espécies de referência são alteradas dos valores do estado morto de referência, contidos na Tabela 1, que somados resultam na $P_{00} = 99312$ Pa, para a pressão do ambiente $P_0 = 101325$ Pa, de maneira reversivel e isotérmica. Assume-se que a concentração das espécies é a mesma em ambos os estados. Agrupando-se todas as etapas, conforme ilustrado na Figura 1, obtêm-se a Equação 3 para o cálculo da exergia de uma corrente de processo.

No caso de correntes de energia, o cálculo é realizado de forma diferente para correntes de calor e trabalho. Para uma corrente de trabalho, o valor da exergia é igual à potência da corrente. Por outro lado, para uma corrente de calor, a exergia é calculada aplicando uma máquina de Carnot, cuja eficiência é dada pela Equação 2:

$$\eta = 1 - \frac{T_0}{\overline{T}} = 1 - \frac{T_0 \cdot \Delta S_{\text{UTILIDADE}}}{\Delta H_{\text{UTILIDADE}}}$$
(2)

Figura 1 - Conjunto de transformações com todas etapas do procedimento para o cálculo da exergia de corrente de processo. Adaptado de Abdollahi-Demneh *et al.* (2011).

$$B = \left(H(T_{1}, P_{1}, \underline{z_{1}}) - H(T_{0}, P_{0}, \underline{z_{1}})\right) - T_{0} \cdot \left(S(T_{1}, P_{1}, \underline{z_{1}}) - S(T_{0}, P_{0}, \underline{z_{1}})\right) + \left(H\left(T_{0}, P_{0}, \underline{z_{1}}\right) - H^{id}\left(T_{0}, \underline{z_{1}}\right)\right) - T_{0} \cdot \left(S(T_{0}, P_{0}, \underline{z_{1}}) - S^{id}\left(T_{0}, P_{0n}, \underline{z_{1}}\right) + \frac{R}{MM(\underline{z_{1}})} \cdot \sum_{i=1}^{n} z_{i} \cdot \ln(z_{i})\right) + \frac{1}{MM(\underline{z_{1}})} \cdot \sum_{i=1}^{n} z_{i} \cdot \ln(z_{i}) + \frac{1}{MM(\underline{z_{1}})} \cdot \sum_{i=1}^{n} z_{i} \cdot \frac{1}{M(\underline{z_{1}})} \cdot \frac{1}{M(\underline{z_{1})}} \cdot \frac{1}{M(\underline{z_{1}})} \cdot \frac{1}{M(\underline{z_{1})}} \cdot \frac{1}{M(\underline{z_{1}})} \cdot \frac{1}{M(\underline{z_{1})}} \cdot \frac$$

3. RESULTADOS E DISCUSSÕES

Os exemplos numéricos apresentados por Abdollahi-Demneh *et al.* (2011) foram simulados, utilizando o mesmo modelo termodinâmico adotado pelo autor (SRK – Soave-Redlich-Kwong), e os resultados foram validados por comparação. Os resultados obtidos referentes à Corrente de gás natural (Temperatura 303,15 K, Pressão 6200 kPa e Vazão molar 500 kgmol/h) encontram-se na Tabela 3, cuja composição encontra-se descrita na Tabela 2,. Outra validação foi conduzida para a exergia química de diversas substâncias, nas condições de 298,15 K e 1 bar. Estes dados encontram-se apresentados em diversos trabalhos científicos. (Lora et al., 2004), (Gharagheizi et al., 2007) e (Zanchini et al., 2009). Os resultados obtidos para algumas substâncias encontram-se na Tabela 4.

Os resultados obtidos para exergia química e física de correntes de gás natural estão de acordo com os publicados por Abdollahi-Demneh *et al.* (2011). Verifica-se também que os dados obtidos para exergia química padrão a 298 K e 1 bar, estão de acordo com os obtidos nos demais trabalhos da literatura. Ambas as verificações configuram uma validação para as rotinas programadas no Aspen HYSYS[®]. Uma vez validada a implementação, foram escolhidos dois exemplos de processos para utilizar a implementação sendo: (1) coluna despropanizadora e (2) planta térmica simplificada.

Componente	Fração molar
$\overline{N_2}$	0,001
H_2S	0,01544
CO_2	0,02835
CH_4	0,8982
C_2H_6	0,03098
C_3H_8	0,01479
$i-C_4H_{10}$	0,0059
$n-C_4H_{10}$	0,003
$i-C_5H_{10}$	0,001
$n-C_5H_{10}$	0,0005
H_2O	0,00086

Tabela 2 – Composição da corrente de gás natural. Adaptado de Abdollahi-Demneh *et al.* (2011)

Tabela 3 – Comparação entre os resultados obtidos para a Corrente de gás natural.

Origem	Exergia Física (kW)	Exergia Química (kW)	Exergia (kW)
Abdollahi-Demneh et al. (2011)	1376,5	118437,1	119813,6
Presente trabalho	1372,5	118558,7	119931,2

	Exergia Química (kJ/kmol)				
Componente	Kotas (1985)	Gharagheizi <i>et al.</i> (2007)	Zanchini <i>et al.</i> (2009)	Lora <i>et al.</i> (2004)	Presente trabalho
H ₂	238490	-	235358	235428	235317
CH_4	836510	837479	830494	830891	830619
C_2H_6	1504360	1493749	1494690	1495052	1493320
C ₃ H ₈	2163190	2159909	2147850	2150830	2148343

Tabela 4 – Exergia Química Molar de alguns componentes a 298 K e 1 bar. (Modelo termodinâmico utilizado no Aspen HYSYS®: SRK – Soave-Redlich-Kwong)

No exemplo da coluna despropanizadora, verificou-se o efeito da razão de refluxo na atribuição dos custos exergéticos das correntes de topo e fundo. O aumento da razão de refluxo proporciona que a separação seja efetuada como um menor número de estágios. Entretanto, há um aumento no dispêndio exergético principalmente na corrente de vapor do refervedor e na irreversibilidade da operação, cuja consequência é o aumento do custo exergéticos dos produtos. Concatenando os resultados da análise termoeconômica com o cálculo do índice de sustentabilidade, proposto por Rosen *et al.* (2008), é possível observar, conforme a Figura 2, que quanto maior o custo exergético do produto de topo, menor é o índice de sustentabilidade do processo. Este comportamento inverso está de acordo com as premissas estabelecidas (Rosen *et al.*, 2008).

Figura 2 – Índice de sustentabilidade e impacto ambiental em relação ao cenário de razão de refluxo mínima da coluna despropanizadora, contra a eficiência racional da operação.

No exemplo baseado em uma planta térmica simplificada, verificou-se que combustíveis com menor número de carbono são capazes de fornecer a mesma disponibilidade de energia que combustíveis de cadeias maiores, com quantidade inferior de emissão de dióxido de carbono, uma vez que, possuem um processo de combustão menos irreversível.

4. CONCLUSÕES

A exergia é baseada na segunda lei da termodinâmica e depende de um referencial, como por exemplo, o estado morto proposto por Szargut et al. (1988) que acarreta a limitação no número de espécies químicas que podem ser tratadas, pois apenas dez elementos químicos estão presentes. A metodologia proposta por Abdollahi-Demneh et al. (2011) contempla uma solução para espécies química contendo enxofre na composição.

Na aplicação desta metodologia em alguns exemplos, verificou-se que a irreversibilidade nos processos é proporcional aos gradientes de transporte de massa, calor, momento e de afinidade química. Observou-se, também, que a eficiência racional, equacionada por Ghannadzadeh et al. (2012), consegue descontar a exergia invariante. A implementação pode ser utilizada, por exemplo, para comparar em termos de exergia: processos criogênicos de separação de N2 e CH4 com uma, duas e três colunas; processos de captura de CO₂, usando membranas não isotérmicas; e projeto de redes de trocadores de calor.

Enfim, a análise exergética é útil ao projeto de processos, sendo capaz de concatenar eficiência e sustentabilidade. Através de critérios de projeto de operações ou processos unitários, é possível efetuar modificações capazes de melhorar a eficiência e reduzir seu impacto ambiental, causado pela geração de desordem, mau aproveitamento dos recursos ou produção de rejeitos. O custo exergético contabiliza, portanto, o custo ambiental. A utilização deste parâmetro na formulação de custos econômicos pode ajudar a mensurar a viabilidade de tecnologias sustentáveis.

5. AGRADECIMENTOS

Os autores agradecem à CAPES, CNPq, FAPERJ e ANP.

6. NOMENCLATURA

υ_{γ,ρ}

Notação Significado / Grandeza Coeficiente estequiométrico referente ao y-ésimo componente na geração/consumo da p-ésima espécie Unidade

	de referencia	
R	Constante dos gases	8314 J/(kgmol.K)
$G_{\mathrm{f},\mathrm{i}}$	Energia de Gibbs molar de formação ideal do i-ésimo componente	J/kgmol
Н	Entalpia mássica	J/kg
S	Entropia mássica	J/(kg.K)
В	Exergia mássica	J/kg
Zi	Fração molar do i-ésimo componente	-
MM	Massa molar da corrente	kg/kgmol
Р	Pressão absoluta	Pa
X_0	Condição ambiente	-
X _{0n}	Condição de referência do simulador	-
P _{ref,i}	Pressão parcial do i-ésimo componente no estado morto de referência	Ра
X_{00}	Condição no estado morto de referência	-
Т	Temperatura absoluta	Κ
\underline{Z}_i	Vetor de frações molares dos componentes da i-ésima corrente	-

7. REFERÊNCIAS

Abdollahi-Demneh, F.; Mohammad, A. M.; Mohammad, R. O.; Hossein, B. Calculating exergy in flowsheeting simulators: A HYSYS implementation. *Energy*, 23 Julho 2011. 36 5320-5327.

Ghannadzadeh, A.; Raphaele, T.; Olivier, B.; Philippe, B.; Pascal, F.; Xavier, J. General methodology for exergy balance in ProSimPlus process simulator. *Energy*, 10 Fevereiro 2012. in press.

Gharagheizi, F.; Mehrpooya, M. Prediction of standard chemical exergy by a three descriptors QSPR model. *Energy conversion & management*, 4 junho 2007. 2453-2460.

Kotas, T. The exergy method of thermal plants analysis. London: Butterworths, 1985.

Lora, E. E. S.; Nascimento, M. A. R. Geração Termelétrica - Planejamento, Projeto e Operação. Rio de Janeiro: Interciência, 2004.

Rosen, M. A.; Dincer, I.; Kanoglu, M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. *Energy Policy*, 2008. 128–137.

Szargut, J.; Morris, D.; Steward, F. *Exergy analysis of thermal, chemical, and metallurgical processes*. Nova Iorque: Hemisphere Publishing Corporation, 1988.

Valero, A.; Lozano, M. A. Theory of the Exergetic Cost. *Energy* Vol. 18, Janeiro 1993. 939-960.

Zanchini, E.; Terlizzese, T. Molar exergy and flow exergy of pure chemical fuels. *Energy*, 13 junho 2009. 1246-1259.