

XXII CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA 23 a 26 de Setembro de 2018 Hotel Maksour Plaza São Paulo – SP

XVII ENCONTRO BRASILEIRO SOBRE O ENSINO DE ENGENHARIA QUÍMICA 27 a 28 de Setembro de 2018 USP São Paulo – SP

CULTIVO E BIOFIXAÇÃO DE CO₂ POR *Chlorella* COM ADIÇÃO PERIÓDICA DE ABSORVENTE QUÍMICO

LUCINI IM^{**}, ROSA GM, MORAES L, MORAIS MG, ROSA APC e COSTA JAV^{*}

Universidade Federal do Rio Grande, Escola de Química e Alimentos e-mails para contato: ^{*}jorgealbertovc@terra.com.br e ^{**}isabelamichel@outlook.com

RESUMO – O objetivo do trabalho foi avaliar o cultivo e biofixação de CO_2 por Chlorella fusca LEB 111 com adição periódica de monoetanolamina (MEA). Para isso, foram realizados ensaios em batelada alimentada com CO_2 e MEA, em fotobiorreatores tubulares verticais de 1,8 L, a 30 °C, 44,8 µmol_{fótons} m⁻² s⁻¹, fotoperíodo 12 h claro/12 h escuro, por 15 d. Assim, foi constatado que a adição periódica de MEA promoveu maior acúmulo de carbono no meio e não reduziu o crescimento.

1. INTRODUÇÃO

A demanda energética mundial por combustíveis fosseis, como o carvão mineral e petróleo, é motivo de constante preocupação devido ao contínuo aumento das emissões de dióxido de carbono (CO₂). Entre as tecnologias de captura de CO₂, a absorção química, com soluções de monoetanolamina (MEA), é destacada como método capaz de atingir eficiências de captura superiores a 90% do gás (Leung *et al.*, 2014). A biofixação de CO₂ por microalgas ocorre naturalmente, por meio da fotossíntese, não gera passivos tóxicos e produz bioprodutos, os quais podem gerar biocombustíveis (Dickinson *et al.*, 2017), entre outros.

O cultivo de *Chlorella* com adição periódica de nutrientes apresenta potencial destacado para produção de biomassa e biofixação de CO₂, como verificado por Vaz *et al.* (2016). A integração entre os sistemas químico e biológico foi abordado com *Scenedesmus* e *Spirulina* e adição de MEA, por Rosa *et al.* (2015) e Sun *et al.* (2015), respectivamente, alcançando aumento da biofixação de CO₂. Entretanto, há lacunas de estudos integrando o cultivo do gênero *Chlorella* e a absorção química com MEA. Deste modo, o objetivo do trabalho foi avaliar a adição periódica de MEA no crescimento e biofixação de CO₂ por *Chlorella fusca* LEB 111.

2. MATERIAL E MÉTODOS

2.1. Micro-organismo e meio de cultivo

O micro-organismo utilizado foi *Chlorella fusca* LEB 111, pertencente da Coleção de Culturas do Laboratório de Engenharia Bioquímica da Universidade Federal do Rio Grande. O meio de cultivo utilizado foi o BG-11 (Rippka *et al.*, 1979) no ensaio controle negativo (CN) e BG-11 isento de Na₂CO₃ nos experimentos com MEA e controle com CO₂ (CCO₂).

XVII ENCONTRO BRASILEIRO SOBRE O ENSINO DE ENGENHARIA QUÍMICA 27 a 28 de Setembro de 2018 USP São Paulo - SP

2.2. Condições de cultivo

O absorvente químico, monoetanolamina (MEA, C₂H₇NO), foi adicionada 50 mg L⁻¹ a cada 3 d. Os ensaios foram realizados em duplicata, em fotobiorreatores tubulares verticais com volume útil de 1,5 L, a 30°C, fotoperíodo de 12 h claro/12 h escuro, iluminância de 44,8 μ mol_{fótons} m⁻² s⁻¹, agitação diária por injeção de ar comprimido à 0,3 vvm (v_{ar} v_{útil}⁻¹ min⁻¹), por 15 d, em modo de batelada alimentada com CO₂. O CO₂ foi injetado durante 1 min h⁻¹ no período claro (12 h) (0,36 mL_{CO2} mL_{meio}⁻¹ d⁻¹) (Rosa *et al.*, 2016).

2.3. Determinações Analíticas

A concentração de biomassa foi determinada por espectrofotometria (espectrofotômetro Shimadzu UV/VIS UVmini-1240, Japão). A alcalinidade das amostras foi determinada por titulação potenciométrica e o pH por medida direta com pHmetro digital portátil (Mettler Toledo FiveGoTM, Suíça) (APHA, 1998). A partir da alcalinidade e pH foi calculada a concentração de carbono inorgânico dissolvido (CID), seguindo as equações de equilíbrio demonstradas por Rosa *et al.* (2015).

2.4. Respostas Avaliadas

A máxima concentração de biomassa $(X_{máx}, g L^{-1})$ foi o máximo valor do parâmetro determinado. A produtividade de biomassa $(P_x, mg L^{-1} d^{-1})$ foi determinada de acordo com a Equação 1, na qual X_t é a concentração de biomassa $(mg L^{-1})$ no tempo t (d) e X₀ é a concentração de biomassa $(mg L^{-1})$ no tempo t (d) e X₀ é a

$$P_{X} = \frac{X_{t} - X_{0}}{t - t_{0}}$$
(1)

A velocidade específica máxima de crescimento ($\mu_{máx}$, d⁻¹) foi a inclinação da reta obtida, na fase logarítmica de crescimento, entre o perfil de concentração de biomassa linearizado (Ln X) e o tempo (d). O tempo de geração (t_g) foi determinado de acordo com a Equação 2. A concentração de CID acumulado (CID_{AC}, mg L⁻¹) foi calculada por meio da diferença entre o CID final e o inicial. A partir de P_X (mg L⁻¹ d⁻¹), fração mássica de carbono na biomassa (x_{cbm} = 0,5), massas molares de CO₂ (MM_{CO2}, g mol⁻¹) e carbono (MM_C, g mol⁻¹), foi possível calcular a taxa de biofixação de CO₂ (TB, mg L⁻¹ d⁻¹) (Equação 3) (Toledo-Cervantes *et al.*, 2013). Com TB (mg L⁻¹ d⁻¹), volume útil dos fotobiorreatores (V_{útil}, L) e taxa mássica de CO₂ alimentada (m, mg d⁻¹), foi calculada a eficiência de uso de CO₂ (E, % m m⁻¹) (Zhang; Kurano; Miyachi, 2002) (Equação 4).

$$t_{g} = \ln(2)/\mu_{máx}$$

$$\tag{2}$$

$$TB = P_X x_{cbm} \frac{MM_{CO_2}}{MM_C}$$
(3)

$$E = \frac{TB V_{\text{útil}}}{\dot{m}} * 100 \tag{4}$$

2.5. Análise Estatística

As respostas obtidas foram comparadas por análise de variância (ANOVA), seguida por teste de Tukey, com nível de confiança de 95%.

3. RESULTADOS E DISCUSSÃO

A $X_{máx}$ e a $P_{máx}$ obtidas com MEA foram estatisticamente iguais (p > 0,05) aos ensaios controles (Tabela 1). Estes resultados foram superiores ao $X_{máx}$ (1,00, 1,16, 1,24, 1,29, 1,32, 1,52 g L⁻¹) e $P_{máx}$ (100, 100, 110 e 130 e 140 mg L⁻¹ d⁻¹) verificadas por Duarte *et al.* (2016), cultivando a mesma cepa, em fotobiorreator tubulares verticais, condições de cultivo similares e gás de combustão simulado (10% de CO₂, variada concentração de cinzas, NO e SO₂). A concentração de CID_{AC} obtida no ensaio com MEA foi superior (p < 0,05) 8,4 e 22,6 % m m⁻¹ em relação ao CN e CCO₂, respectivamente.

Tabela 1 – Resultados médios da concentração de biomassa máxima ($X_{máx}$), produtividade máxima ($P_{máx}$), velocidade específica máxima de crescimento ($\mu_{máx}$), tempo de geração (t_g), concentração de carbono inorgânico dissolvido acumulado (CID_{AC}), taxa de biofixação de CO₂ máxima (TB_{máx}) e eficiência máxima de uso de CO₂ ($E_{máx}$), obtidos nos ensaios de *Chlorella fusca* LEB 111

Parâmetro	Com adição de MEA	Controle com CO ₂	Controle negativo
X _{máx} (g L ⁻¹)	$2,01 \pm 0,07^{a}$	$1,95 \pm 0,02^{a}$	$2,04 \pm 0,01^{a}$
$P_{máx}(mg L^{-1} d^{-1})$	$152,4 \pm 2,9^{a}$	$150,4 \pm 1,3^{a}$	$150,5 \pm 2,6^{a}$
μ _{máx} (d ⁻¹)	$0,23 \pm < 0,01^{a}$	$0,20\pm0,02^{\mathrm{b}}$	$0,14\pm0,02^{c}$
$t_{g}(d)$	$3,0\pm0,1^{\circ}$	$3,5\pm0,1^{b}$	$4,9\pm0,2^{a}$
CID _{AC} (mg L ⁻¹)	$81,4\pm0,8^{a}$	$66,5\pm1,6^{\rm c}$	$75,2\pm1,0^{b}$
$TB_{máx}$ (mg L ⁻¹ d ⁻¹)	$279,4\pm5,2^{\rm a}$	$275,8\pm2,0^{\mathtt{a}}$	-
E _{máx} (% m m ⁻¹)	$43,8\pm0,8^{a}$	$43,3\pm0,4^{a}$	-

Letras minúsculas sobrescritas iguais, na mesma linha, indicam que as médias não diferem estatisticamente ao nível de 95% de confiança (p > 0,05).

O ensaio com MEA apresentou maior $\mu_{máx}$ (0,23 d⁻¹) e menor t_g (3,0 d), ambas as respostas com diferença estatística (p < 0,05) dos ensaios controles. Nesta condição não houve diferença significativa na P_{máx}, TB_{máx} e E_{máx} (p > 0,05) (Tabela 1). Entretanto, P_{máx} e a TB_{máx}, obtidas com *C. fusca* LEB 111 com adição periódica de MEA, foi 90% e 4% superior, respectivamente, ao encontrado por Duarte *et al.* (2017) (80 mg L⁻¹ d⁻¹ e 146,7 mg L⁻¹ d⁻¹), em cultivos com a mesma cepa, em fotobiorreatores tubulares de 2,0 L e injeção de 10% de CO₂ comercial.

4. CONCLUSÃO

Diante do apresentado, foi verificado superior acúmulo de CID no meio (81,4 mg L⁻¹) quando monoetanolamina foi adicionado periodicamente no cultivo de *Chlorella fusca* LEB

XVII ENCONTRO BRASILEIRO SOBRE O ENSINO DE ENGENHARIA QUÍMICA 27 a 28 de Setembro de 2018 USP São Paulo – SP

111. Além disso, a produtividade de biomassa não foi reduzida neste ensaio com absorvente de CO₂. Portanto, foi possível comprovar que a adição periódica de MEA ressaltou a potencialidade da cepa estuda como bioprocesso de produção de biomassa e mitigação de CO₂.

5. REFERÊNCIAS

- APHA. American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington DC., 1998.
- DICKINSON S, MIENTUS M, FREY, D, AMINI-HAJIBASHI A, OZTURK S, SHAIKH F, SENGUPTA D, EL-HALWAGI MM, A review of biodiesel production from microalgae. *Clean Technol Envir*, v. 19, n. 3, p. 637–668, 2017.
- DUARTE JH, FANKA LS, COSTA JAV, Utilization of simulated flue gas containing CO₂, SO₂, NO and ash for *Chlorella fusca* cultivation. *Bioresource Technol*, v. 214, p. 159–165, 2016.
- DUARTE JH, MORAIS EG, RADMANN EM, COSTA JAV, Biological CO₂ mitigation from coal power plant by *Chlorella fusca* and *Spirulina* sp. *Bioresource Technol*, v. 234, p. 472–475, 2017.
- LEUNG DYC, CARAMANNA G, MAROTO-VALER MM, An overview of current status of carbon dioxide capture and storage technologies. *Renew Sust Energ Rev*, v. 39, p. 426–443, 2014.
- RIPPKA R, DERUELLES J, WATERBURY JB, HERDMAN M, STANIER RY, Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. *J Gen Microbiol*, v. 111, n. 1, p. 1–61, 1979.
- ROSA GM, MORAES L, CARDIAS BB, SOUZA MRAZ, COSTA JAV, Chemical absorption and CO₂ biofixation via the cultivation of *Spirulina* in semicontinuous mode with nutrient recycle. *Bioresource Technol*, v. 192, p. 321–327, 2015.
- ROSA GM, MORAES L, SOUZA MRAZ, COSTA JAV, *Spirulina* cultivation with a CO₂ absorbent: Influence on growth parameters and macromolecule production. *Bioresource Technol*, v. 200, p. 528–534, 2016.
- SUN Z, ZHANG D, YAN C, CONG W, LU Y, Promotion of microalgal biomass production and efficient use of CO₂ from flue gas by monoethanolamine. *J Chem Technol Biot*, v. 90, n. 4, p. 730–738, 2015.
- TOLEDO-CERVANTES A, MORALES M, NOVELO E, REVAH S, Carbon dioxide fixation and lipid storage by *Scenedesmus obtusiusculus*. *Bioresource Technol*, v. 130, p. 652–658, 2013.
- VAZ BS, COSTA JAV, MORAIS MG, CO₂ Biofixation by the Cyanobacterium *Spirulina* sp. LEB 18 and the Green Alga *Chlorella fusca* LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin. *Appl Biochem Biotech*, v. 178, n. 2, p. 418– 429, 2016.
- ZHANG K, KURANO N, MIYACHI S, Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. *Bioproc Biosyst Eng*, v. 25, n. 2, p. 97–101, 2002.