

Unicamp - Campinas - SP 19 a 22 de julho de 2015

APLICAÇÃO DE ÍNDICES DE DIAGNÓSTICO DE HIDROCARBONETOS ALIFÁTICOS NA AVALIAÇÃO DE IMPACTO AMBIENTAL EM UM DOS PRINCIPAIS AFLUENTES DA MARGEM DIREITA DO RIO AMAZONAS

L. M. de CASTRO¹, S. D. da ROCHA¹, L. M. da SILVA¹ e T. C. S. de OLIVEIRA¹

¹Universidade Federal do Amazonas, Departamento de Química E-mail para contato: lore.mady@gmail.com

RESUMO – A presença de hidrocarbonetos alifáticos em águas superficiais é atribuída ao aporte de substâncias tanto de origem natural como de fontes antropogênicas. Uma ferramenta auxiliar que permite a aferição entre os fatores de aporte dessas substâncias nos recursos hídricos consiste no uso de índices de diagnóstico dos hidrocarbonetos alifáticos quantificados das amostras. O local de amostragem é um trecho do rio Madeira entre os municípios de Porto Velho-RO, Manicoré e Borba-AM. Os n-alcanos (n- C_{12} ao n- C_{40}) e os isoprenóides pristano e fitano foram identificados e quantificados, pelo método de padronização interna (padrão interno: n- C_{24} d) por cromatografia gasosa com detector de ionização de chama (GC-DIC). Entre os pontos analisados, verificou-se através da presença marcante de MCNR e das razões n- C_{17} /pristano e n- C_{18} /fitano que o ambiente sofreu contaminação recente de caráter petrogênico apesar das razões <n C_{20} /n C_{21} >, pristano/fitano e do n-alcano mais abundante indicarem que o aporte predominante de n-alcanos nesse ambiente é de origem biogênica.

1. INTRODUÇÃO

O crescimento demográfico expressivo aliado à expansão industrial das grandes metrópoles tem influenciado de forma significativa no aumento da pressão das atividades antrópicas sobre os recursos naturais. Esta realidade tem acarretado em impactos como o comprometimento dos recursos, em alguns casos irreversivelmente, ou na diminuição da oferta destes (Goulart e Callisto, 2003). Os mananciais localizados próximos a zonas urbanas sofrem significativamente com as alterações na superfície terrestre. A exposição dos corpos hídricos a poluição desenfreada resulta na necessidade de conhecer em profundidade o funcionamento dos ecossistemas além dos fatores que atuam sobre eles, no intuito de se obter referenciais que permitam a avaliação da magnitude dos impactos ambientais decorrente das alterações antrópicas (Lougon *et al.*, 2009).

O conhecimento do potencial carcinogênico, mutagênico e tóxico de alguns compostos orgânicos (Aboul-Kassim e Simoneit, 2001) tem resultados em esforços para a verificação da importância destes como indicadores ambientais de poluição dos corpos hídricos. Entre estes compostos destacam-se os hidrocarbonetos alifáticos que são constituídos por uma quantidade vasta de compostos que possuem origem tanto natural (plantas terrestres vasculares, por

Unicamp - Campinas - SP 19 a 22 de julho de 2015

exemplo) ou antropogênica. Dentre as fontes antropogênicas podem ser citadas: derrame de petróleo, combustão parcial do petróleo e seus derivados, queimadas que ocorrem em florestas e a degradação diagenética de precursores biogênicos.

Os hidrocarbonetos alifáticos de origem petrogênica aparecem como uma sequência completa de n-alcanos de cadeia longa e curta, enquanto que os originados a partir de plantas vasculares aparecem como uma um sequência de n-alcanos ímpares (n-C₂₃ à n-C₃₅, onde n-C₂₇, n-C₂₉ e n-C₃₁) (Readman *et al.*, 2002; Eglinton e Hamilton, 1967). Carreira *et. al* (2009) afirma que a síntese biogênica acarreta na produção de n-alcanos ímpares, enquanto que os de origem petrogênica resultam na distribuição relativamente uniforme de n-alcanos de cadeias pares e ímpares. A presença de n-alcanos leves, como o n-C₁₇, principalmente, indica que o aporte da matéria orgânica é de origem planctônica.

Entretanto, quando se trata de monitoramento, a utilização de hidrocarbonetos como indicadores ambientais pode não ser a melhor escolha, devido alguns destes apresentarem frequentemente concentrações abaixo do limite de detecção das metodologias usualmente adotadas (Dickenson *et al.*, 2011). O uso de índices de diagnóstico, apesar de não minimizar o problema anteriormente citado, tem se mostrado uma ferramenta auxiliar efetiva na aferição das fontes de aporte de hidrocarbonetos nos recursos hídricos. Este estudo averiguará para cada ponto de amostragem a concentração total de n-alcanos de n- C_{12} a n- C_{40} , a mistura complexa não resolvida (MCNR), a fração total de alifáticos, além das seguintes razões: resolvidos/MCNR, $\leq C_{20}/C_{21} \geq$, pristano/fitano, n- C_{17} /pristano e n- C_{18} /fitano; com o objetivo de verificar quais as fontes predominantes de hidrocarbonetos alifáticos nas águas de um trecho do rio Madeira.

2. METODOLOGIA

2.1. Área de estudo

A região de estudo (Figura 1) abrange um trecho do rio Madeira localizado entre os estados de Rondônia e Amazonas em pontos localizados as margens dos municípios de Porto Velho, Manicoré e Borba.

Cada ponto amostrado foi devidamente identificado, georreferenciado e listado na Tabela 1 no ato da coleta.

Tabela 1 – Descrição e códigos dos pontos de amostragem e suas respectivas coordenadas geográficas

Cádigo do amostro	Coordenadas		Município
Código da amostra	Latitude	Longitude	Município
Rio Madeira VII	8°41'17.91''S	63°55'7.10''O	Porto Velho
Rio Madeira IX	5°47'10.25''S	61°17'28.65''O	Manicoré
Rio Madeira X	4°53'34.37''S	60°1'24.59''O	Borba/Fazenda Vista Alegre

Unicamp - Campinas - SP 19 a 22 de julho de 2015

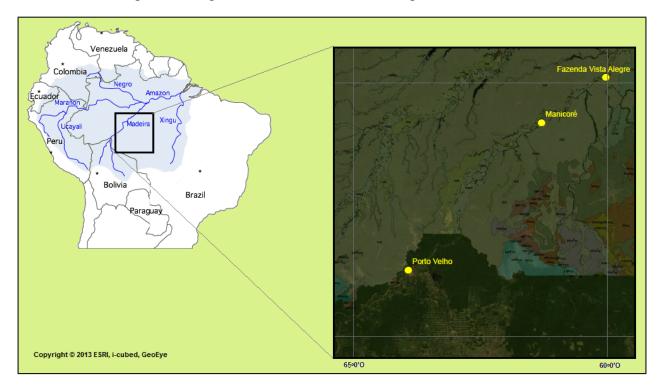


Figura 1 – Região da bacia Amazônica abrangida neste estudo

2.2. Amostragem e procedimentos analíticos

As amostras de água foram coletadas com o auxílio de garrafa van Dorn submersa à 30cm abaixo da lâmina d'água e, em seguida, direcionadas para garrafas de vidro de 1000mL. As duplicatas das amostras foram misturadas para a realização da extração conforme a metodologia da Agência de Proteção Ambiental dos Estados Unidos – EPA 3510. A extração líquido-líquido ocorreu após adição de 3 porções de 100mL de diclorometano seguida de agitação vigorosa para posterior recolhimento da fase orgânica em frasco de vidro. Antes desta etapa, são adicionados na mistura os padrões deuterados: n-C₃₀D₆₂ (2500ng) para controle da fração alifática. O volume do extrato foi reduzido em Turbo Vapp para posterior separação da fração saturada.

Os hidrocarbonetos alifáticos foram extraídos por cromatografia líquida em coluna de sílica/alumina (10,0g de sílica + 7,0g de alumina + 1,0g de sulfato de sódio). A coluna foi eluída com 60mL de hexano, onde o extrato obtido é concentrado em sistema TurboVap[®], completado para 1mL e foram adicionados os padrões internos de quantificação. Estes foram identificados e quantificados pelo método de padronização interna, onde o padrão interno utilizado foi o n-C₂₄d e a concentração da mistura complexa não-resolvida foi obtida com detector de ionização por chama (CG-DIC) segundo a metodologia EPA-8015B. O equipamento utilizado foi um cromatógrafo Thermo Finnigan, modelo Focus GC com detector DIC. A coluna foi do tipo J&W DB 5 (30 m x 0,32mm x 0,25μm). O gás de arraste utilizado foi o hélio à um fluxo de 2mL.min⁻¹. Os limites de detecção e quantificação foram de 0,011μg.L⁻¹ e 0,022μg.L⁻¹, respectivamente.

Unicamp - Campinas - SP 19 a 22 de julho de 2015

3. RESULTADOS E DISCUSSÕES

Inicialmente, os hidrocarbonetos foram caracterizados em relação ao somatório total de n-alcanos, de hidrocarbonetos resolvidos, da mistura complexa não-resolvida (MCNR) e de alifáticos para cada ponto de coleta. Segundo Carreira *et. al* (2009), a presença de n-alcanos de cadeia longa com número ímpar indica que a possível fonte da matéria orgânica são as ceras epicuticulares oriundas de plantas superiores o que é observado nos pontos Rio Madeira IX e X.

A MCNR é considerada por ser uma mistura de muitos isômeros de estrutura complexa e homólogos de hidrocarbonetos cíclicos e ramificados. De forma geral, a presença de MCNR nos cromatogramas é associada a resíduos de petróleo degradados ou resistentes (Readman *et al.*, 2002). No ponto Rio Madeira VII (Porto Velho-RO) verifica-se que o valor de MCNR (Tabela 2) se apresentou bem mais alto que nos demais pontos. Aboul-Kassim & Simoneit (2001)

Tabela 2 – Resultados do somatório de hidrocarbonetos alifáticos das amostras

	Rio Madeira VII	Rio Madeira IX	Rio Madeira X
Hidrocarbonetos resolvidos	750,35	0,07	0,52
MCNR	1571,15	1,861	1,861
Total de alifáticos	2321,49	0,07	0,52
Recuperação (%)	52,6	46,14	95,76

Os isoprenóides pristano e o fitano não são componentes primários da biota terrestre, sendo constituídos pela alteração geológica do fitol, onde, caso o pristano apresente maior abundância em relação ao fitano, a fonte de hidrocarbonetos predominante é de origem petrogênica (Wang et al., 1999, Wu et al., 2001). Apenas o ponto Rio Madeira VII apresentou a razão pristano/fitano (Tabela 3) ligeiramente > 1 e o hidrocarboneto mais abundante foi C_{17} indicando que o aporte de hidrocarbonetos é predominantemente de fonte biogênica. Em complemento a essa afirmação, para o mesmo ponto verifica-se que a razão $\leq C_{20}/C_{21} \geq$ apresentou valor >1 e, segundo Commendatore & Esteves (2004), esta ocorrência indica a entrada de hidrocarbonetos oriundos de plantas e algas. Segundo o mesmo autor, os hidrocarbonetos provenientes da degradação bacteriana, de plantas vasculares e da remobilização sedimentar resultam em baixos valores da razão $\leq C_{20}/C_{21} \geq$, resultado este observado nos pontos Rio Madeira IX(0,5526) e Rio Madeira X (0,2756), indicando que estes ambientes se mantêm relativamente conservados em relação a estes parâmetros.

A relação a n-C₁₇/Pristano e n-C₁₈/Fitano para o ponto Rio Madeira VII apresentou valor >1 indicando a ocorrência de emissão recente de óleo nessa localidade, sendo esta informação complementada pelo valor de MCNR mostrado na Tabela 3. Entretanto, a razão Resolvidos/MCNR indica que esse óleo recentemente introduzido se encontra em processo de degradação.

Unicamp - Campinas - SP 19 a 22 de julho de 2015

Tabela 3 – Índices de diagnóstico dos n-alcanos analisados

	Rio Madeira VII	Rio Madeira IX	Rio Madeira X
Máximo	C ₁₇	C ₁₂	C ₂₇
Resolvidos/MCNR	0,4776	0,0376	0,2794
$\leq C_{20}/C_{21} \geq$	3,4691	0,5526	0,2756
Pristano/Fitano	1,2140	1	1
n-C ₁₇ /pristano	2,0090	1	1
n-C ₁₈ /fitano	2,2299	1	1

Segundo ANA (2013), a porcentagem da população do estado de Rondônia não atendida por rede de esgoto é de 98%, sendo que o município de Porto Velho – RO é um dos principais responsáveis pelos maiores valores de carga orgânica doméstica remanescente (14,8 t DBO/dia) entre os afluentes da margem direita da Bacia Amazônica (ANA, 2011). Contudo, através da análise do valor de MCNR e das razões nC₁₇/pristano e nC₁₈/fitano, verificou-se que ambiente sofreu contaminação recente de origem petrogênica. Estudos como o de Elcimar e Mariangela (2007) verificaram a contaminação dos aquíferos de Porto Velho ocasionada por vazamentos de tanques de armazenamento em postos de abastecimento, comprometendo a qualidade das águas dessa região, o que seria uma hipótese para o aporte dessas espécies de hidrocarbonetos nas águas às margens deste município.

4. CONSIDERAÇÕES FINAIS

O uso de índices de diagnóstico na aferição das fontes de aporte de hidrocarbonetos em águas superficiais mostrou-se uma técnica eficaz na averiguação do impacto ambiental de recursos hídricos. Dentre os pontos amostrados ao longo do trecho do rio Madeira apenas o ponto em frente ao Município de Porto Velho-RO apresentou ocorrência de contaminação recente de fonte petrogênica. No entanto este ponto também apresentou predominância de hidrocarbonetos de origem biogênica. Tendo por finalidade a tomada de iniciativas para o uso de tecnologias limpas para a remoção destes contaminantes que prejudicam a saúde e a qualidade de vida da população local.

5. REFERÊNCIAS BIBLIOGRÁFICAS

- ABOUL-KASSIM, T.S.T.; SIMONEIT, B.R.T. Organic pollutants in aqueous-solid phase environments: types, analyses and characterizations. *The hand. of envir. chem.*, v. 5, 105p, 2001.
- ANA AGÊNCIA NACIONAL DE ÁGUAS; Plano estratégico de recursos hídricos dos afluentes da margem direita do rio Amazonas. Vol. 1, Brasília: ANA, 2011.
- ANA AGÊNCIA NACIONAL DE ÁGUAS; Conjuntura dos recursos hídricos no Brasil. Brasília: ANA, 432p., 2013.
- CARREIRA, R. S.; RIBEIRO, P. V.; SILVA, C. E. M.; FARIAS, C. O. Hidrocarbonetos e esteróis como indicadores de fontes e destino de matéria orgânica em sedimentos da Baía de Sepetiba, Rio de Janeiro. *Química Nova*, 2009, v. 7, p. 1805 1811, 2009.

Unicamp - Campinas - SP 19 a 22 de julho de 2015

- COMMENDATORE, M.G.; ESTEVES, J.L. Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina). *Marine Pol. Bul.* V. 48, p.910-918, 2004.
- DICKENSON, E. R. V.; A SNYDER, S.; SEDLAK, D. L.; DREWES, J. E.; Indicator compounds for assessment of wastewater effluent contributions to flow and water quality., *Water Res.*, V. 45, p. 1199–212, 2011.
- EGLINTON, G.; HAMILTON, R. J.; .Leaf epicuticular waxes. *Science, V.* 156, p. 1322–1334, 1967
- FORTE, E. J.; AZEVEDO, M. S.; DE OLIVEIRA, R. C.; DE ALMEIDA, R.; Contaminação de aquífero por hidrocarbonetos: Estudo de caso na vila tupi, Porto Velho Rondônia, *Quim. Nova*, V. 30, p. 1539–1544, 2007.
- GOULART, M. D. C.; CASTILHO, M.; Bioindicadores de qualidade de água como ferramenta em estudos de impacto ambiental. *Rev. da FAPAM*, V. 9, 2003.
- LOUGON, M. S.; LOUZADA, F. L. R. O; ROCHA, S. A.; GARCIA, G. O.; SANTOS, A. R.; Diagnóstico ambiental da sub-bacia hidrográfica do córrego amarelo, abordando o uso e ocupação do solo e a qualidade da água. *Eng. Ambiental*, V. 6, p. 350-367, 2009.
- READMAN, J.W.; FILLMANN, G.; TOLOSA, I.; BARTOCCI, J.; VILLENEUVE, J. P.; CATINNI, C.; MEE, L. D.; Petroleum and PAH contamination of the Black Sea. M. *Pollution Bul.*, V. 44, p. 48–62, 2002.
- WANG, Z.; FINGAS, M.; PAGE, D.S. Oil spill identification. *Journal of Chromatography A*, V. 843, p. 369-411, 1999.
- WU, Y.; ZHANG, J.; MI, T.; LI, B. Occurrence of *n*-alkanes and polycyclic aromatic hydrocarbons in the core sediments of the Yellow Sea. *Marine Chemistry*, V. 76, p. 1–15, 2001.