

INFLUÊNCIA DO CROMO E NIÓBIO NO CATALISADOR NA REAÇÃO DE DECOMPOSIÇÃO DO ISOPROPANOL

M. C. de ALMEIDA MONTEIRO¹, J. A. J. RODRIGUES², G. G. CORTEZ¹

¹ Departamento de Engenharia Química, Laboratório de Catálise I – EEL-USP, Lorena-SP, ² Instituto Nacional de Pesquisas Espaciais – LCP E-mail para contato: maria@alunos.eel.usp.br

RESUMO - A fase de transição da alumina mais utilizada em catálise é a γ -Al₂O₃, devido principalmente a sua elevada área superficial. Por meio da reação de decomposição do isopropanol, observou-se que a adição de cromo aos suportes alumina-nióbio diminuiu a taxa de reação e a produção de propeno devido à diminuição de sítios ácidos sobre o suporte.

1. INTRODUÇÃO

Aluminas de transição são amplamente utilizadas como catalisadores e suportes em processos relacionados à indústria petroquímica e ao refino do petróleo, por possuírem características favoráveis aliadas a suas propriedades ácido-base (Gajardo *et al.*, 1980). O nióbio apresenta gradnde potencial na aplicação em catálise heterogênea, apesar de seus óxidos apresentarem baixa atividade catalítica. (Smiths *et al.*, 1991). Em catalisadores de cromo suportado, resultados de técnicas de caracterização revelaram que o cromo suportado possui espécies superficiais bidimensionais abaixo da monocamada que são os sítios ativos em muitas reações de desidrogenação oxidativa de alcanos (Al-Zahrani *et al.*, 2003).

Neste projeto, foram produzidos suportes Al₂O₃-Nb₂O₅ com diferentes concentrações do óxido de nióbio, e em seguida esses suportes foram impregnados com óxido de cromo. As amostras foram caracterizadas e, as propriedades ácidas e/ou básicas de suportes e catalisadores foram avaliadas na reação decomposição do isopropanol.

2. METODOLOGIA

Sintetizou-se uma pseudoboehmita pelo preparo de uma solução aquosa de aluminato de sódio e solução de sulfato de alumínio. Adicionou-se o agente precipitante NaAlO₂ à solução de Al₂(SO₄)₃, com temperatura em 60°C. Em seguida realizou-se a lavagem do precursor, e depois a amostra foi seca em estufa a 50°C e calcinada até 500°C. A alumina foi impregnada com solução aquosa de NH₄[NbO(C₂O₄)₂(H₂O)₂](H₂O)_n aquecida a 70°C, de modo que a porcentagem de óxido de nióbio (Nb₂O₅) na alumina (Al₂O₃) fosse 5, 10 e 15% (p/p). Adicionou-se a alumina ao balão do rotoevaporador e o solvente foi evaporado sob vácuo. O pó residual foi seco a 110°C em estufa, e calcinado a 600°C em mufla, obtendo-se assim os suportes Al₂O₃/Nb₂O₅. Na preparação dos catalisadores, utilizou-se uma solução aquosa de Cr(NO₃)₃.9H₂O e a impregnação foi realizada pelo mesmo método descrito acima. O pó residual foi seco a 110°C em estufa, e depois calcinado a 450°C, obtendo-se assim os catalisadores identificados por 4Cr/NbAl.

3. RESULTADOS E DISCUSSÕES

A área superficial (S_{BET}), o volume de poros (V_p) e o diâmetro médio de poros (D_p) das amostras são apresentados na Tabela 1. Observou-se que a área específica, o volume de poros e o diâmetro médio de poros do suporte diminuíram com a impregnação de cromo sobre os suportes contendo 5 e 10% (p/p) de Nb₂O₅; para o suporte com 15% (p/p) de nióbio, a adição de cromo provocou um aumento da área específica. Uma comparação entre os três suportes permite concluir que os três parâmetros analisados são menores quanto maior a quantidade de nióbio na alumina.

Suportes/ catalisadores	Nb ₂ O ₅ (% p/p)	Cr ₂ O ₃ (% p/p)	S _{BET} (m ² .g ⁻¹)	V _p (cm ³ .g ⁻¹)	D _p (Å)
5Nb/Al	5	0	300	0,59	99
4Cr/5NbAl	5	23,2	277	0,40	47
10Nb/Al	10	0	307	0,59	82
4Cr/10NbAl	10	23,7	278	0,37	34
15Nb/Al	15	0	237	0,43	70
4Cr/15NbAl	15	19,3	253	0,39	39

Tabela 1 - Valores de área específica, volume de poros e diâmetro de poros do suporte e catalisadores.

As Figuras 1 e 2 apresentam as isotermas adsorção-dessorção de N_2 e distribuição de volume de poros, respectivamente, dos suportes e catalisadores. Pela Figura 1, percebe-se que tanto o suporte como os catalisadores se enquadram na isoterma do tipo IV, onde o ramo inferior mostra a quantidade de nitrogênio adsorvido com o aumento da pressão relativa, enquanto que o ramo superior representa a quantidade do gás dessorvido no processo inverso. As isotermas do tipo IV apresentam histereses e são características de materiais mesoporosos com forte afinidade e interação adsorvente-adsorvato (Donohue e Aranovich, 1999). O fenômeno da histerese é mais evidente quanto maior for a dispersão do tamanho dos poros (Teixeira *et al.*, 2001).

A Figura 2 permite observar que os suportes contendo 5 e 10% (p/p) de Nb₂O₅ apresentam maior quantidade de poros na faixa de 60 a 160 Å e o suporte com 15% (p/p) de nióbio apresenta maior quantidade de poros na faixa de 60 a 100 Å, ou seja, a adição de nióbio aumentou a distribuição de poros de menor diâmetro, indicando que o óxido Nb₂O₅ se deposita nos poros de maior diâmetro, conforme ele é adicionado. Os catalisadores impregnados com Cr_2O_3 apresentam em sua maioria poros de 20 a 60 Å e de 80 a 160 Å, o que pode ser observado pela diminuição do diâmetro médio de poros, em relação ao suporte, constatada pela análise utilizando o método BET.

19 a 22 de julho de 2015

Figura 2 - Distribuição de volume de poros por diâmetro dos suportes e catalisadores.

Figura 3 - Difratograma de raios X do precursor, da γ-alumina, dos suportes e catalisadores. Picos referentes às fases (●) boehmita, (□) γ-Al₂O₃ e (■) Cr₂O₃.

Os resultados do difratograma de raios X mostraram que o precursor é constituído por boehmita, e, portanto, os suportes e os catalisadores são constituídos por γ -alumina. Observou-se que a presença de 5, 10 e 15% (p/p) de Nb₂O₅ na alumina não altera seu perfil de DRX, provavelmente devido à formação de estruturas amorfas ou à baixa quantidade de nióbio adicionada. A adição de cromo aos três suportes ocasionou o aparecimento de picos mais intensos em 20 iguais a 33,56° e 36,19° e um terceiro pico em 20 igual a 54,65° (Ma *et al.*, 2011), referentes ao Cr₂O₃.

Os perfis de redução Cr_2O_3 mássico, dos suportes e catalisadores são mostrados na Figura 4. O perfil de RTP do Cr_2O_3 mássico mostra um pico de redução a 421°C, indicando que algumas espécies Cr no Cr_2O_3 puro possam ter sido oxidadas quando a amostra foi exposta ao ar. No caso de catalisadores Cr_2O_3 suportado em Al_2O_3 , os perfis de redução apresentam um pico entre 250 e 450°C, que são atribuídos à redução das espécies Cr^{6+} à estrutura Cr_2O_3 , onde o cromo possui um estado de oxidação menor (Cr^{3+}) (Ma *et al.*, 2011), e outro a aproximadamente 490°C, devido à redução parcial de Cr^{6+} a Cr^{2+} , indicando que essas amostras possuem Cr_2O_3 microcristalino ou amorfo capaz de suportar espécies Cr^{6+} redutíveis a Cr^{2+} (Kanervo, Krause, 2002). Pela Figura 4, percebe-se que não houve pico de redução de nióbio em nenhuma das amostras devido à baixa concentração de Nb_2O_5 na alumina. A redução à temperatura programada dos suportes impregnados com cromo mostrou picos de redução em 373 e 378 °C, devido à redução do Cr^{6+} a Cr^{3+} .

Figura 4 - Perfis de RTP do Cr₂O₃ mássico, dos suportes e catalisadores.

Tabela 2 - Resultados da taxa específica de reação (TER) e da taxa específica de formação dos produtos (TEP) dos suportes e catalisadores a 270 °C.

Suparta/antaligadaras	TER	TEP (μmol.m ⁻² .min ⁻¹) / 270 °C		
Suporte/catalisadores	$(\mu mol.m^{-2}.min^{-1})$	Propeno	Éter diisopropílico	
Al_2O_3	12,8	13,2	0,4	
5Nb/Al	23,9	23,9	0,1	
10Nb/Al	24,0	24,0	0,2	
15Nb/Al	25,1	24,6	0,5	
4Cr/5NbAl	6,7	6,0	0,4	
4Cr/10NbAl	9,9	9,9	0	
4Cr/15NbAl	15,1	15,1	0,1	

Os resultados da atividade catalítica obtidos na reação de decomposição do isopropanol, na temperatura de 270° para uma conversão de 15 % de isopropanol, são mostrados na Tabela 2. A impregnação da γ -alumina com nióbio aumentou a taxa de reação e a produção de propeno, porém diminuiu a produção de éter diisopropílico. Isso ocorre porque o óxido de nióbio apresenta sítios ácidos fortes, o que explica o aumento da formação de propeno à medida que aumenta a quantidade de nióbio presente na alumina. A impregnação de cromo sobre os suportes diminuiu a taxa de reação e a formação de propeno, embora essas duas taxas sejam maiores quanto maior for a porcentagem de nióbio no catalisador contendo cromo. Considerando que a decomposição do isopropanol ocorre através de duas reações paralelas: a desidratação conduzida pelos sítios ácidos, formando propileno e éter diisopropílico e a desidrogenação para formação de acetona sobre sítios básicos ou redox (Swierkosz *et al.*, 1987), a diminuição da atividade catalítica após a impregnação com cromo indica que houve um bloqueio sobre os sítios ácidos mais fortes dos suportes.

4. CONCLUSÕES

O DRX do precursor revelou um material composto por boehmita. Os suportes apresentaram em seu DRX apenas a alumina de transição γ -Al₂O₃, porém a adição de cromo aos suportes provocou o aparecimento de picos referentes ao Cr₂O₃. As propriedades texturais da γ -Al₂O₃ foram modificadas pela adição de nióbio e cromo, devido ao bloqueio dos micro e mesoporos. Nos resultados de RTP, os catalisadores apresentaram picos referentes apenas ao óxido de cromo. A partir da reação de decomposição do isopropanol, observa-se que a taxa de reação e a formação de propeno e éter são diretamente proporcionais à porcentagem de óxido de nióbio na alumina. Além disso, a produção de propeno e éter diisopropílico confirma a presença basicamente de sítios ácidos nos catalisadores.

5. AGRADECIMENTOS

Ao LCP-INPE de Cachoeira Paulista/SP e à FAPESP (2014/13765-8).

6. REFERÊNCIAS

- Al-ZAHRANI, S. M.; JIBRIL, B. Y.; ALBASAEED, A. E., Selection of optimum chromium oxide-based catalysts for propane oxidehydrogenation. *Catal. Today*, v. 81, p. 507-516, 2003.
- DONOHUE, M. D.; ARANOVICH, G. L., A new classification of isotherms for Gibbs adsorption of gases on solids. *Fluid Phase Equilib.*, v. 158-160, p. 557-563, 1999.
- GAJARDO, P.; GRANGE, P.; DELMON, B., Structure of oxide CoMoγ-Al₂O₃ hydrodesulfurization catalysts: An XPS and DRS study. *J. Catal.*, v. 63, p. 201-216, 1980.
- KANERVO, J. M.; KRAUSE, A. O., Characterization of Supported Chromium Oxide Catalysts by Kinetic Analysis of H₂-TPR Data. J. Catal., v. 207, p. 57-65, 2002.
- SMITS, R. H. H.; SESHAN, K.; ROSS, J. R. H., The selective oxidative dehydrogenation of propane over niobium pentoxide. J. Chem. Soc., Chem. Commun., v. 8, p. 558-559, 1991.
- SWIERKOSZ, B. G., Acidic properties of mixed transition metal oxides. *Mater. Chem. Phys.*, v. 17, p. 121-144, 1987.
- TEIXEIRA, V. G.; COUTINHO, F. M. B.; GOMES, A. S., Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno. *Quím. Nova*, v. 24(6), p. 808-818, 2001.
- MA, R; HU, P.; JIN, L.; WANG, Y.; LU, J.; LUO, M, Characterization of CrO_x/Al₂O₃ catalysts for dichloromethane oxidation. *Catal. Today*, v. 175, p. 598-602, 2011.