

OBTENÇÃO E CARACTERIZAÇÃO DE NANOFIBRAS CERÂMICAS DE ÓXIDO DE ZINCO POR ELETROFIAÇÃO

M. C. da ROCHA¹, R. C. NONATO¹ e A. R. MORALES¹

¹ Universidade Estadual de Campinas, Faculdade de Engenharia Química E-mail para contato: morales@feq.unicamp.br, m147342@dac.unicamp.br

RESUMO – Nos dias atuais há um grande interesse em nanomateriais, dentre eles as nanofibras, pois elas apresentam diversas propriedades atrativas, como elevadas propriedades térmicas e mecânicas, além de alta resistência à corrosão. Neste trabalho, pretende-se estudar as condições de processo para a obtenção de nanofibras de óxido de zinco (ZnO) por eletrofiação (*electrospinning*), bem como caracterizá-las por Microscopia Eletrônica de Varredura e Difração de Raios X, com posterior discussão de resultados focando sua futura aplicação na produção de nanocompósitos de matriz polimérica. As nanofibras de ZnO foram escolhidas graças a sua versatilidade de aplicações.

1. INTRODUÇÃO

As fibras cerâmicas apresentam propriedades atrativas para a indústria, uma vez que são inertes, apresentam alta rigidez, além de serem amplamente conhecidas por suas excelentes propriedades mecânicas e térmicas, bem como sua resistência à corrosão. Tais características as tornam amplamente utilizadas em diversos campos, destacando-se como um dos principais reforços utilizados em compósitos, cuja confecção ganhou um destaque muito importante nos últimos anos. Dentre as aplicações mais conhecidas, ressalta-se a fabricação de componentes eletrônicos, componentes de distribuição de medicamentos, aplicações ambientais, em processos de filtração e separação, como substrato para catálise, sensores e eletrodos para conversão de energia ou dispositivos de armazenamento (Ramaseshan *et al.*, 2007).

Com o passar dos anos, muitos métodos foram desenvolvidos para se produzir materiais cerâmicos na forma de nanoestruturas, uma vez que materiais cerâmicos nanoestruturados são ainda mais atrativos devido a sua maior área interfacial. Uma técnica simples e versátil é denominada eletrofiação, conhecida do inglês como e*lectrospinning*, em que é possível fabricar-se estruturas unidimensionais (1D), como nanofibras, em uma escala industrial e com diâmetro, composição e morfologia controláveis. Grandes comprimentos, grande área interfacial e estruturas porosas hierárquicas são algumas das características e propriedades apresentadas nas fibras cerâmicas produzidas por meio da eletrofiação (Li; Xia, 2003). Ressalta-se, inclusive, que as mesmas podem ser preparadas como membranas por meio deste método, tornando conveniente sua manipulação durante suas aplicações.

Dentre as nanofibras fabricadas por eletrofiação destacam-se as nanofibras de Óxido de Zinco (ZnO), devido às suas boas propriedades mecânicas, além de sua grande resistência térmica e à corrosão. Muito se estuda o ZnO na forma de pó e não na forma de nanofibras (Sim *et al.*, 2005; Tjong; Liang 2006). Seu uso vai desde aplicações para sensores de gases até

como pomada devido às suas propriedades antissépticas (Moorer *et al.*, 1982; Wei *et al.*, 2011), sendo o uso na área médica muito explorado, principalmente por conta de seu poder antibactericida (Lee, 2009).

2. JUSTIFICATIVA E OBJETIVOS

Atualmente, devido às propriedades e características atrativas, tem-se um grande interesse no desenvolvimento de novas aplicações para as nanofibras cerâmicas, especialmente aquelas produzidas por meio de eletrofiação, entretanto, a produção das mesmas é pouco explorada no Brasil, e não são encontrados relatos de estudos de nanofibras de ZnO por instituições nacionais.

Dessa maneira, o domínio de métodos eficazes para a fabricação de nanofibras cerâmicas é tido como de estratégica importância, visto que as mesmas podem ser utilizadas em diversos campos, muitos deles ainda em desenvolvimento e com promissoras aplicações futuras. As nanofibras de ZnO foram escolhidas por suas aplicações diversas já estudadas, além de sua possibilidade de uso em outros campos.

Desta forma, tem-se como objetivo do trabalho o estudo das condições de processo para a fabricação de nanofibras cerâmicas de ZnO por meio de eletrofiação, baseado na realização de um planejamento fatorial para determinar a condição de processo ótima no meio mais favorável, visando a um maior rendimento e obtenção de fibras com diâmetros menores e mais homogêneos. Tem-se também como objetivo a caracterização inicial por MEV e Difração de Raios X das nanofibras de ZnO obtidas. Este estudo é realizado como parte do trabalho de doutorado de um aluno do grupo de pesquisa.

3. METODOLOGIA

3.1. Preparação da solução

As nanofibras cerâmicas de ZnO foram fabricadas por meio da eletrofiação. Nesta técnica, partiu-se de uma solução onde foram diluídos os precursores da fibra cerâmica, no caso do ZnO utilizou-se o Acetato de Zinco Diidratado, o polímero Acetato de Polivinila (PVA) e como solvente a água. Essa solução foi colocada numa seringa fixada em uma bomba diante do aparelho. A partir de uma diferença de potencial, ocorre a deposição desses elementos da seringa em uma placa de cobre revestida com uma folha de alumínio. Esse material foi então calcinado, restando somente a nanofibra cerâmica.

O método de preparação da solução consistiu na solubilização dos precursores em água destilada. A concentração em massa utilizada foi de 7,5% de PVA e 7,5% de AcZn. Houve a agitação à temperatura ambiente durante 6 horas para garantir-se a homogeneidade adequada. A solução permaneceu em repouso por um período de 24 horas.

3.2. Eletrofiação

As características morfológicas das fibras cerâmicas obtidas pela eletrofiação, como dimensão, formato e diâmetro, são fortemente influenciadas pelos parâmetros envolvidos no processo de obtenção. Dessa forma, a eletrofiação caracteriza-se como uma técnica complexa,

entretanto possui um princípio de funcionamento simples (Gensheimer *et al.*; 2007). Ela consiste na preparação da solução polimérica constituída dos precursores da fibra cerâmica, que é posteriormente introduzida em uma seringa. Esta é ligada à uma bomba que permite a solução ser expelida com uma vazão constante. Dois eletrodos conectados a uma fonte de alta voltagem são utilizados para gerar uma diferença de potencial entre a agulha e um coletor de metal revestido por uma folha de alumínio localizado à frente da seringa. Um dos eletrodos é conectado na ponta da agulha e o outro fixado no coletor de metal (Li *et al.*; 2006), de forma que a solução seja atraída pelo coletor devido à diferença de potencial gerada. Durante essa etapa, é verificada a evaporação do solvente, que permite a deposição da fibra seca e normalmente na forma de manta sobre a folha de alumínio que reveste o coletor metálico (Wannatong *et al.*, 2004).

Logo, o aparato experimental necessário para a eletrofiação inclui uma seringa dotada de uma agulha; uma fonte de alta voltagem; uma bomba de vazão; um coletor de metal (Ramakrishna *et al.*, 2005) e uma folha de alumínio para revestimento do coletor. Uma fita isolante também pode ser necessária, se porventura um isolamento for necessário.

Almeja-se que as nanofibras produzidas por eletrofiação sejam contínuas, detenham diâmetros com valores estáveis e controláveis, bem como apresentem uma superficie livre de defeitos ou com defeitos controláveis (Nista, 2012). Tais características são afetadas por diversos parâmetros que influenciam o processo de eletrofiação, podendo-se citar: as propriedades da solução (viscosidade, condutividade elétrica e tensão de superfície) que influenciam principalmente o diâmetro e morfologia das fibras, as condições de processo (voltagem, distância do coletor, vazão da solução e efeito do coletor) e os parâmetros ambientais (umidade e pressão).

No presente trabalho estudou-se os seguintes parâmetros de processo relativos à eletrofiação: voltagem, distância do coletor e vazão da solução. Além do tempo de calcinação e da temperatura de calcinação que serão os responsáveis pela formação do ZnO.

3.3. Caracterização das nanofibras

<u>Microscopia Eletrônica de varredura</u>: As nanofibras foram observadas por Microscopia Eletrônica de Varredura, com o intuito de se observar imagens de alta resolução, com uma aparência tridimensional, da superfície da amostra para enfim se ter uma melhor ideia de sua estrutura final. A morfologia das fibras foi observada antes e após a calcinação, podendo-se confirmar, assim, a formação de fibras e se obter informações sobre seu diâmetro. Posteriormente, com o uso do software ImageJ 1.47, serão obtidas 50 medições de diâmetro para a determinação do diâmetro médio das fibras de cada amostra.

<u>Difração de Raios X</u>: A difração de raios X será realizada antes e após a calcinação com o intuito de confirmar se houve a formação de ZnO após a calcinação. Dessa forma, tem-se como objetivos a caracterização dos reagentes utilizados e posterior identificação da conversão do AcZn em ZnO.

3.4. Proposta de trabalho

Estudos preliminares do grupo de pesquisa indicaram que a confecção de nanofibras de ZnO foi otimizada com concentrações de 7,5 % de PVA e 7,5 % de AcZn. Com essas informações, fez-se um planejamento fatorial 2⁵ visando otimizar os parâmetros de processo, além de maximizar a quantidade de fibra formada. As variáveis em questão bem como seus limites superior e inferior encontram-se na Tabela 1.

	Variáveis codificadas					Variáveis decodificadas				
				_	_				Tempo	Temperatura
	Distância coletor (cm)	Vazão (ml /min)	Voltagem (kV)	Tempo calcinação (h)	Temperatura	Distância coletor (cm)	Vazão (ml/min)	Voltagem (kV)	calcinação (h)	calcinação (°C)
A1	1	1	1	1	1	15	0.0388	22	6	500
A2	1	1	1	1	-1	15	0,0388	22	6	300
A3	1	1	1	-1	1	15	0,0388	22	3	500
A4	1	1	1	-1	-1	15	0,0388	22	3	300
B1	1	1	-1	1	1	15	0,0388	17	6	500
B2	1	1	-1	1	-1	15	0,0388	17	6	300
B3	1	1	-1	-1	1	15	0,0388	17	3	500
B4	1	1	-1	-1	-1	15	0,0388	17	3	300
C1	1	-1	1	1	1	15	0,0194	22	6	500
C2	1	-1	1	1	-1	15	0,0194	22	6	300
C3	1	-1	1	-1	1	15	0,0194	22	3	500
C4	1	-1	1	-1	-1	15	0,0194	22	3	300
D1	1	-1	-1	1	1	15	0,0194	17	6	500
D2	1	-1	-1	1	-1	15	0,0194	17	6	300
D3	1	-1	-1	-1	1	15	0,0194	17	3	500
D4	1	-1	-1	-1	-1	15	0,0194	17	3	300
E1	-1	1	1	1	1	10	0,0388	22	6	500
E2	-1	1	1	1	-1	10	0,0388	22	6	300
E3	-1	1	1	-1	1	10	0,0388	22	3	500
E4	-1	1	1	-1	-1	10	0,0388	22	3	300
F1	-1	1	-1	1	1	10	0,0388	17	6	500
F2	-1	1	-1	1	-1	10	0,0388	17	6	300
F3	-1	1	-1	-1	1	10	0,0388	17	3	500
F4	-1	1	-1	-1	-1	10	0,0388	17	3	300
G1	-1	-1	1	1	1	10	0,0194	22	6	500
G2	-1	-1	1	1	-1	10	0,0194	22	6	300
G3	-1	-1	1	-1	1	10	0,0194	22	3	500
G4	-1	-1	1	-1	-1	10	0,0194	22	3	300
H1	-1	-1	-1	1	1	10	0,0194	17	6	500
H2	-1	-1	-1	1	-1	10	0,0194	17	6	300
H3	-1	-1	-1	-1	1	10	0,0194	17	3	500
H4	-1	-1	-1	-1	-1	10	0,0194	17	3	300

Tabela 1 – Planejamento fatorial 2⁵

As eletrofiações foram realizadas à temperatura e umidade ambientes, utilizando-se uma seringa de vidro de 20 ml e uma agulha metálica com 4 cm de comprimento e 0,8 mm de diâmetro interno. O polo positivo do voltímetro foi conectado à agulha da seringa, enquanto o

outro polo foi ligado a uma placa de cobre coletora, posicionada à distância desejada da agulha e revestida com uma folha de alumínio.

A vazão de saída da solução da agulha foi mantida e controlada por uma bomba conectada à seringa. Cada composição foi eletrofiada por um período de 90 minutos, sendo esperado que as amostras coletadas apresentem-se como membranas finas sobre a folha de alumínio.

As membranas foram levadas, ainda no papel alumínio, para uma mufla, onde foram calcinadas, etapa esta, onde espera-se haver a eliminação do PVA e formação do ZnO. As membranas formadas foram analisadas por MEV e DRX antes e após a calcinação.

4. ANÁLISE DE RESULTADOS

Dos experimentos realizados, notou-se em todas as eletrofiações um expressivo gotejamento verticalmente abaixo da ponta da agulha em maior ou menor grau, entretanto aparentemente tal evento não interferiu na formação das nanofibras. Visualmente notou-se que não houve formação de fibras para as combinações referentes aos grupos B e D de forma que não foi necessária a realização de MEV e DRX.

Notou-se, também, que houve boa formação de fibra para as combinações referentes aos grupos A, C, E e G, destacando-se que nos dois primeiros grupos, a membrana formada apresentava-se mais homogênea, com aspecto regular e com melhor recobrimento da área.

Dessa forma, verificou-se a obtenção de fibras sendo todas as amostras já calcinadas, todavia não é possível tirar-se maiores conclusões, pois ainda há análises de MEV e DRX a serem feitas e estudadas. Até o presente momento, todas as análises de MEV já foram concluídas. Como etapas futuras tem-se a determinação do diâmetro médio, bem como as análises de DRX.

A Figura 1, a seguir, mostra algumas imagens MEV das membranas obtidas. Destaca-se que o diâmetro médio de cada amostra ainda será determinado futuramente pelo software ImageJ 1.47.

Figura 1 – Imagem MEV das membranas: a) grupo A antes da calcinação, b) amostra A3 após calcinação. A ampliação envolvida nas duas imagens é de 5000x.

Pela figura 1a observa-se que após a eletrofiação obteve-se a morfologia fibrosa para as composições do grupo A, tal morfologia manteve-se após a calcinação para a amostra A3, evidenciando que os parâmetros de calcinação selecionados foram capazes de manter a estabilidade dimensional da mesma.

5. CONCLUSÃO

Com os experimentos realizados até o momento verificou-se a formação de fibras por eletrofiação, entretanto não é possível tirar maiores conclusões, pois ainda há análises de MEV e DRX a serem feitas e estudadas. Atestou-se ainda, como visto na literatura, que distâncias muito grandes entre a agulha e o coletor metálico podem fazer com que a voltagem não seja suficiente para o processo de eletrofiação. Tal fato pôde ser verificado pela não formação de fibra nas combinações +1-1-1 (15 cm; 0,0194 mL/min e 17 kV) e +1+1-1 (15 cm; 0,0388 mL/min e 17 kV), ambas associadas a maiores distâncias e menores voltagens.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- GENSHEIMER, M.; BECKER, M.; BRANDIS-HEEP, A.; WENDORFF, J. H.; THAUER, R. K.; GREINER, A. Novel Biohybrid materials by electrospinning: Nanofibers of Poly(ethylene oxide) and Living Bacteria. *Advanced Materials.*, v. 19, p. 2480-2482, 2007.
- LEE, S. Multifunctionality of layered fabric systems based on electrospun polyurethane / zinc oxide nanocomposite fibers. *Journal of Applied Polymer Science*. v. 114, p. 3652-3658, 2009.
- LI, D.; XIA, Y. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. *Nano Letters.*, v. 3, p. 555, 2003.
- LI, L.; BELLAN, L. M.; CRAIGHEAD, H. G.; FREY, M. W. Formation and properties of nylon-6and nylon-6/montmorillonite composite nanofibers. *Polymer.*, v. 47, p. 6208-6217, 2006.
- MOORER, W. R.; GENET, J. M. Antibacterial activity of gutta-percha cones attributed to the zinc oxide component. *Oral Surgery, Oral Medicine, Oral Pathology*. v. 53, p. 508–517, 1982.
- NISTA, S. V. G. Desenvolvimento e Caracterização de Nanofibras de Acetato de Celulose para Liberação Controlada de Fármacos. *Dissertação de Mestrado*. Universidade Estadual de Campinas (UNICAMP), 2012.
- RAMAKRISHNA, S.; FUJIHARA, K.; TEO, W.; LIM, T.; MA, Z. An Introduction to Electrospinning and Nanofibers. *World Scientific.*, 2005.
- RAMASESHAN, R.; SUBRAMANIAN, S.; RAJAN, J.; RAMAKRISHNA, S. Nanostructured Ceramics by Electrospinning. *Journal of Applied Physics.*, v. 102, 2007.
- WANNATONG, L.; SIRIVAT, A.; SUPAPHOL, P. Effects of solvents on electrospinning polymeric fibers: Preliminary study on polystyrene. *Polymer International.*, v. 53, p. 1851-1859, 2004.
- WEI, S.; ZHOU, M.; DU, W. Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. *Sensors and Actuators B.*, v. 160, p. 753-759, 2011.