

REDUÇÃO DO VOLUME DE UM RESÍDUO DE AZUL DE METILENO UTILIZANDO ENERGIA SOLAR

BARTMER, L.¹; FURMAN, L. P.¹; MEDEIROS, C. O. F.¹; BUENO, K. L.¹; SOUZA, T. R.¹

¹ Universidade Federal do Pampa, Departamento de Engenharia Química, Campus Bagé E-mail para contato: ligiabartmer@hotmail.com

RESUMO — Órgãos de controle ambiental estabelecem padrões rigorosos para lançamento de efluentes líquidos ao meio ambiente, obrigando eficientes tecnologias de tratamento. Processos de pré-tratamentos, tem facilitado o tratamento final de efluentes líquidos, diminuindo o tempo de operação e custo total, como a evaporação, que consiste numa operação unitária que tem por finalidade concentrar soluções constituídas de solventes voláteis e solutos considerados não voláteis, pela evaporação parcial do solvente. O objetivo deste trabalho é utilizar um evaporador solar para realizar uma redução de volume, concentrando uma solução de azul de metileno, obtida como resíduo laboratorial. A inclinação do coletor solar é mantida em 20° e a vazão de alimentação da solução em 0,0015 kg/s, valores esses determinados em experimentos anteriores. Os resultados obtidos mostram os valores das taxas de evaporação realizados a cada 30 minutos.

1. INTRODUÇÃO

Um dos assuntos mais discutidos na atualidade é a escassez e a falta de gerenciamento da água, que, segundo as previsões mais alarmantes, será motivo de grandes conflitos mundiais ainda neste século. Esses problemas se tornam mais ameaçadores quando se verifica o estado de degradação nas margens dos cursos d'água, devido principalmente a presença de atividades domésticas, agroindustriais e industriais. Essas atividades utilizam a água natural de forma indiscriminada e liberam seus efluentes de forma inadequada (Bahia, 2004).

Da mesma forma, a falta ou precariedade de saneamento básico, para grande parte da população do Brasil, implica no lançamento do lixo e dos efluentes domésticos em diversos cursos d'água. Os impactos decorrentes destes problemas têm se tornado crescente e coloca em risco a saúde da população que reside próximo a esses locais (Palz, 1981).

Os órgãos de controle ambiental têm estabelecido padrões cada vez mais rigorosos para o lançamento de efluentes líquidos ao meio ambiente, obrigando a implantação de eficientes tecnologias de tratamento. Os efluentes líquidos quando submetidos a um processo de prétratamento, tem facilitado o seu tratamento final, diminuindo o tempo de operação e custo total (Aldabó, 2002).

Um exemplo de pré-tratamento muito utilizado é a evaporação, que consiste numa operação unitária que tem por finalidade concentrar soluções constituídas de solventes voláteis e solutos considerados não voláteis, pela evaporação parcial do solvente. Como os

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

solutos são considerados não voláteis, no equilíbrio a fase gasosa ou o evaporado só contém solvente, ou seja, a fração de solvente no evaporado é de 100%. Na fase líquida, que é a solução a ser concentrada, há frações tanto de soluto quanto de solvente. Na evaporação, a energia é aplicada a um líquido a uma pressão constante, elevando a temperatura até o ponto de saturação, quando ele detém o máximo de energia possível sem entrar em ebulição. À medida que energia adicional é aplicada, a pressão de vapor do líquido atinge a pressão de vapor do ambiente adjacente e o líquido começa a vaporizar. O calor de vaporização é a quantidade de energia necessária para o líquido se transformar em vapor, sem mudança de temperatura. O vapor resultante se separa do líquido residual, aumentando a concentração da fração não volátil (Incropera e Witt, 1992).

O uso da evaporação solar para concentrar soluções diluídas (na maioria dos casos efluentes industriais) mostra-se eficaz com solutos prejudiciais à saúde ou ao meio ambiente, como o azul de metileno (Macedo, 1996).

A evaporação também pode ser usada na concentração de soluções visando apenas uma redução de volume, que segue para a destinação final ou descarte.

Alguns autores estudaram alternativas para a destinação final ou a utilização desta solução concentrada. Dentre esses autores destacam-se: Amorim *et al.* (2007), Soares *et al.* (2006) e Proença (2002).

Amorim *et al.* (2007), Soares *et al.* (2006) e Proença (2002) propõem a utilização da solução concentrada em piscinas especiais, visando à criação de certas espécies de peixes marinhos e de camarão, gerando uma renda extra para a família beneficiada com a dessalinização.

Uma das alternativas apresentada por Soares *et al.* (2006) e Proença (2002) foi uma redução do volume da solução pela evaporação solar, seguida de uma cristalização. Neste caso, o rejeito transforma-se em um produto sólido que poderá ser utilizado como complemento alimentar para animais (principalmente o gado).

Outra solução apontada por Amorim *et al.* (2007) e Soares *et al.* (2006), é a utilização da solução concentrada para irrigar plantas halófitas que apresentam alta tolerância aos sais e elevado poder nutritivo. Esse tipo de planta pode ser usado como alimento para a criação de animais, presentes na região.

A técnica de evaporação com aquecimento direto pode empregar a energia solar como combustível, pois consiste em fonte energética renovável e limpa, não emitindo poluente. Existem diferentes formas de utilizar a energia solar no aquecimento, concentração ou tratamento de águas. A principal delas é o aproveitamento da radiação solar como energia térmica em um evaporador solar. Souza *et al.* (2008) apresentaram a aplicação térmica da energia solar na concentração de soluções diluídas (efluentes industriais) como uma forma de uso de energia alternativa.

Observando essa tendência, o objetivo geral deste trabalho é utilizar um evaporador solar para concentrar uma solução de azul de metileno, reduzindo seu volume de forma

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

ecologicamente correta. Esse fato é interessante, uma vez que os laboratórios da universidade pagam as empresas que realizam o tratamento de efluentes, por litro de solução enviada.

2. METODOLOGIA

A solução de azul de metileno foi escolhida por se tratar de um resíduo laboratorial, servindo de teste para redução de volume. Se a evaporação for eficiente para esse tipo de resíduo, será testada a evaporação solar de mais efluentes laboratoriais visando uma redução de custos com a destinação final de tais soluções, uma vez que os laboratórios da universidade pagam as empresas que realizam o tratamento de efluentes, por litro de solução enviada.

O esquema do evaporador solar utilizado no trabalho pode ser visualizado na Figura 1. Este equipamento encontra-se no laboratório de Fenômenos de Transporte da Universidade Federal do Pampa - UNIPAMPA, campus Bagé.

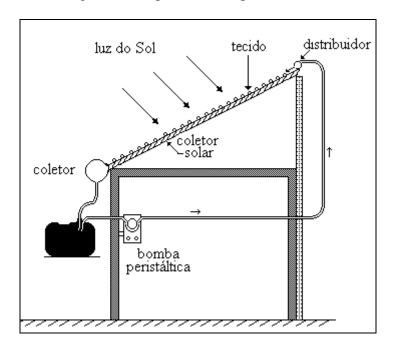


Figura 1 – Esquema do evaporador solar.

Os experimentos foram realizados mantendo a inclinação da placa fixa em 20° e a vazão de alimentação em 2,5 Kg/s. Esses valores foram determinados como o ponto onde se obteve maior taxa de evaporação em trabalhos anteriores, como: Souza *et al.* (2008) e Bartmer *et al.* (2015).

Todos os experimentos foram realizados de forma contínua das 9:00 as 16:30 horas, para verificar como o equipamento se comporta no decorrer de todo o dia. Vale a pena ressaltar que o fluído é alimentado na parte superior da placa, escoa sobre sua superfície, é coletado na parte inferior, sendo depositado em um recipiente negro, sendo novamente succionado por uma bomba até a parte superior da placa. O fluído se mantém em um ciclo fechado.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

A realização dos experimentos ocorreu em dias parecidos, em dias de sol pleno (sem nuvens), para manter a quantidade de radiação solar incidente o mais similar possível, em todos os dias que se realizaram os experimentos, atenuando os efeitos da diferença de incidência da radiação solar.

É necessário lembrar que as variáveis meteorológicas também interferem na taxa de evaporação, sendo constantemente monitoradas.

As medições dos dados experimentais, tais como: temperatura ambiente, umidade relativa, pressão atmosférica, temperatura do fluido (na entrada e na saída da placa) e vazão mássica do fluido (na entrada e na saída da placa) foram realizadas a cada 30 minutos.

3. RESULTADOS

As medições dos dados ambientais a cada 30 minutos, podem ser visualizadas na Tabela 1.

HORA	Temperatura Ambiente (°C)	Velocidade do Vento (Km/h)	Umidade Relativa (%)	Irradiância difusa (MJ/m²)	Irradiância direta (MJ/m²)	Irradiância global (MJ/m²)
09:00	21,4	0,04	58	0,360	0,504	0,864
09:30	21,5	0	60	0,310	0,765	1,075
10:00	21,6	0	62	0,220	1,001	1,221
10:30	21,5	2	63	0,155	1,222	1,377
11:00	22	6	61	0,109	1,466	1,575
11:30	22,9	0	59	0,090	1,753	1,844
12:00	23,8	0,01	58	0,103	1,914	2,017
12:30	24,3	4	56	0,122	1,985	2,107
13:00	24,3	3	54	0,130	2,025	2,155
13:30	25,1	6	52	0,146	2,121	2,267
14:00	26,2	5,9	49	0,132	2,171	2,303
14:30	26,4	11,3	49	0,085	2,260	2,345
15:00	27	7,3	46	0,113	2,185	2,298
15:30	26,4	8,7	46	0,160	1,923	2,083
16:00	26,8	6	45	0,220	1,312	1,532
16:30	26,5	5,3	44	0,270	0,884	1,154
Média	$24,2\pm2,2$	4,1±3,5	53,9±6,6	$0,17\pm0,08$	$1,59\pm0,57$	$1,76\pm0,5$

Tabela 1 – Valores das variáveis meteorológicas

Na Tabela 1 pode-se observar que os valores da temperatura ambiente aumentam gradativamente ao longo do dia, apresentando um pico de 26,8 °C as 16:00 horas, enquanto os valores de umidade relativa diminuem. A velocidade do vento apresentou valores baixos ao longo de todo o dia. Os autores Furman *et al.* (2015) encontraram em experimento realizado na mesma estação do ano (primavera) e na mesma cidade os valores de temperatura ambiente de 21,5±2,3 °C, velocidade do vento de 11,3±3,2 km/h e umidade relativa de 62,8±6,8 %.

Os valores de radiação solar global e difusa, utilizados nesse trabalho, foram obtidos na Estação Meteorológica da Universidade de Santa Maria – RS, pois Bagé não dispõe desses dados. Mesmo com a distância de 250 km entre Bagé e Santa Maria, os valores de radiação podem ser utilizados com uma boa aproximação.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

Os valores de temperatura da solução dentro do reservatório, vazão de entrada e vazão de saída do fluído no equipamento, podem ser visualizadas na Tabela 2 a seguir, juntamente com os valores de porcentagem de evaporação.

Tabela 2 – Resultados da porcentagem de evaporação

HORA	Temperatura da Solução (°C)	Vazão de Entrada (Kg/s)	Vazão de Saída (Kg/s)	% Evaporação
09:00	19,6	0,0026	0,0023	9,37
09:30	19,6	0,0025	0,0023	7,42
10:00	19,8	0,0026	0,0023	13,87
10:30	19,4	0,0026	0,0022	17,79
11:00	20,5	0,0026	0,0022	15,78
11:30	23,3	0,0026	0,0022	15,72
12:00	24,4	0,0027	0,0023	14,31
12:30	26,1	0,0026	0,0022	17,70
13:00	26,3	0,0027	0,0022	18,49
13:30	28,5	0,0026	0,0021	18,79
14:00	25,2	0,0026	0,0024	8,87
14:30	28,2	0,0026	0,0020	21,07
15:00	34,1	0,0026	0,0023	11,40
15:30	27,1	0,0026	0,0020	21,99
16:00	27,6	0,0026	0,0020	23,40
16:30	30,4	0,0026	0,0019	25,68

Na Tabela 2, verifica-se que dentre todos os experimentos realizados, o que apresentou maiores valores de porcentagem de evaporação, ao longo de todo o dia foi o realizado as 16:30 horas. Este resultado seria esperado por análise física, uma vez que, nesse horário o ambiente apresentou maiores valores de temperatura ambiente e velocidade do vento e menores valores de umidade relativa. O fluído se mantém em um ciclo fechado e por isso a temperatura da solução vai aumentando ao longo do dia, favorecendo a evaporação. Esse favorecimento é verificado nos valores de taxa de evaporação, que se eleva durante todo o dia, mesmo o ambiente apresentando valores de radiação solar mais elevados por volta das 14:00 horas.

Vale a pena ressaltar que o volume inicial de solução era de 7 litros sendo reduzido para 0,2 litros.

4. CONCLUSÃO

O principal resultado foi à obtenção de taxas de evaporação consideráveis, o que nos leva a acreditar num futuro promissor para uso desse equipamento, não só nas cidades de teste como em todo o território nacional, uma vez que se trata de um equipamento barato, de fácil instalação e manutenção e ecologicamente correto para evaporar efluentes a partir da energia solar.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

Verificou-se uma redução de volume de 7 litros para 0,2 litros, ou seja, uma redução de 3500%. Esses resultados comprovam a eficácia do uso de evaporador solar para reduzir o volume de efluentes.

Um fato interessante a ser destacado é que alguns autores não recomendam a instalação de equipamentos solares em cidades localizadas no sul do Brasil e esse trabalho mostra exatamente o contrário.

5. REFERÊNCIAS

- ALDABÓ, R. (2002) Energia Solar. Artliber: São Paulo.
- AMORIM, M. C. C.; PORTO, E. R.; SILVA JÚNIOR, L. G. A. (2007). Evaporação solar como alternativa de reuso dos efluentes da dessanilização por osmose inversa. Disponível em: http://www.bvsde.paho.org/bvsaidis/aresidua/i-007.pdf>. Acesso em 17 jan. 2007.
- BAHIA, G. Disponível em: <www.guilhermebahia.hpg.ig.com.br/pagina2.htm>. Acesso em: 09 jan.2004.
- BARTMER, L.; LAUERMANN, B.; WOHLEMBERG, J. C.; RODRIGUES, L. M.; SOUZA, T. R.. Obtenção de Valores de Taxa de Evaporação em um Evaporador Solar. In: VII Simpósio de Energia e Meio Ambiente, 2015, Pelotas. Anais do VII Simpósio de Energia e Meio Ambiente, 2015.
- FURMAN, L. P.; BARTMER, L.; LAUERMANN, B.; MESSA, A.; MELO, P. F. S.; RODRIGUES, L. M.; SOUZA, T. R. Otimização do funcionamento de um evaporador solar,. In: II Encontro de Ciências e Tecnológica do IF Sul Campus Bagé, 2015, Bagé. Anais do II Encontro de Ciências e Tecnológica do IF Sul Campus Bagé, 2015.
- INCROPERA, F. P.; WITT, D. P. D. (1992) Fundamentos de transferência de calor e massa. Rio de Janeiro: Editora Guanabara Koogan S. A., 455.
- MACEDO, H. (1996) Tratamento de águas com altas concentrações de cloretos. 1996. 79f. Dissertação (Mestrado em Engenharia Hidráulica e Sanitária) Escola Politécnica, Universidade de São Paulo.
- PALZ, W. Energia Solar e fontes alternativas. São Paulo: Hemus, 1980.
- PROENÇA, C. N. O. (2002) Tecnologias limpas para preservação e conservação da qualidade dos recursos hídricos no semi-árido do estado da Bahia. 2002, 30f. Monografia (Departamento de Hidráulica e Saneamento) Escola Politécnica, Universidade Federal da Bahia.
- SOARES, M. T.; SILVA, I. J. O. C.; DUARTE, S. N.; SILVA, E. F. F. (2006) Destinação de águas residuárias provenientes do processo de dessalinização por osmose reversa. *Revista Brasileira de Engenharia Agrícola e Ambiental*, v. 10, n° 3, p. 730-737.
- SOUZA, T. R.; SALVAGNINI, W. M.; CAMACHO, J. L. P.; TAQUEDA, M. E. S.. Performance of a solar energy powered falling film evaporator with film promoter. Energy Conversion and Management, v. 49, p. 3550-3559, 2008.