16 a 19 de Julho de 2017

AVALIAÇÃO DE RESÍDUOS AGROINDUSTRIAIS PARA OBTENÇÃO DE CERA DA CANA-DE-AÇÚCAR

A. O. GUIZELINI, V. H. R. DA COSTA, V. R. S. DA SILVA, G. DOUBEK e P. F. M. MARTINEZ

Universidade Estadual de Campinas, Faculdade de Engenharia Química E-mail para contato: pfmmartinez@feq.unicamp.br

RESUMO - A grande produção de cana de açúcar no Brasil origina uma grande quantidade de resíduos resultantes de seu processamento. Para promover o melhor aproveitamento e a valorização destes resíduos agroindustriais, é de grande interesse a transformação destes materiais em substâncias de maior valor agregado. Sabe-se que a partir da cana de açúcar pode ser extraída uma cera. As ceras encontram aplicações nas mais diversas áreas com fins alimentícios, cosméticos e farmacêuticos. A cera de cana de açúcar, por exemplo, pode ser usada na produção de policosanol, que é uma mistura de álcoois alifáticos de cadeia longa, que apresenta a propriedade de reduzir o colesterol do sangue. Neste trabalho foram avaliados 3 resíduos da indústria sucroalcooleira como fonte de cera: a casca da cana de açúcar, a torta do filtro rotativo, e o bagaço da cana. Entre eles, o que apresentou maior teor de cera foi a casca da cana de açúcar. Desta forma, para este material foram estudados diferentes parâmetros que influenciam no processo de extração, como: o tamanho de partícula, quantidade e tipo de solvente, e tempo. Os parâmetros de produção de cera de cana são pouco estudados, mas de grande importância para a definição de um possível processo de produção.

1. INTRODUÇÃO

De acordo com Antoine Laurent Lavoisier: "na natureza nada se cria, nada se perde, tudo se transforma." Entretanto, atualmente, tem havido um descompasso entre a velocidade de geração de resíduos e a capacidade da natureza em absorvê-los, causando um grande problema ambiental, pois os resíduos, quando dispostos inadequadamente, aumentam o potencial poluidor, contaminam solos e corpos hídricos, e quando da lixiviação de compostos, acarretam problemas de saúde pública. Por isso, nos últimos anos, especial atenção vem sendo dada a minimização e ao reaproveitamento de resíduos gerados nos diferentes processos agroindustriais, principalmente por constituírem-se fontes renováveis para a obtenção de novos produtos.

O cultivo de cana de açúcar é uma cultura agrícola bastante expressiva no Brasil, sendo um dos destaques do agronegócio nacional. Atualmente, o Brasil é líder na produção de cana de açúcar e de seus derivados, ocupando a posição de maior produtor mundial de cana de açúcar, maior produtor e exportador de açúcar, e o segundo maior produtor de etanol.

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

A grande produção de cana de açúcar no Brasil origina uma grande quantidade de resíduos resultantes de seu processamento.De acordo com a CONAB, Companhia Nacional de abastecimento, a produção estimada de cana de açúcar para a safra 2015/16 é de aproximadamente 655 milhões de toneladas de cana de açúcar, cujo processamento gerará cerca de 216 milhões de toneladas de resíduos sólidos.

Para promover o melhor aproveitamento e a valorização destes resíduos agroindustriais, é de grande interesse a transformação destes materiais em substâncias de maior valor agregado. Um dos resíduos que pode ser reaproveitado do processamento da cana corresponde a torta do filtro rotativo proveniente do processo de filtração do caldo da cana de açúcar durante a produção de açúcar e álcool. Atualmente, no Brasil, a utilização desta torta tem se restringido ao seu uso como fertilizante nos campos de cultivo. Um outro resíduo corresponde a casca da cana de açúcar, que é proveniente da produção de garapa. Antes da cana de açúcar ser enviada para os garapeiros para extração do caldo de cana, as hastes são raspadas, produzindo um material que também é subutilizado como fertilizante nos campos de cultivo. E por fim também há o bagaço de cana, que é um resíduo produzido durante a extração do caldo de cana durante as primeiras etapas da produção de açúcar e álcool e que atualmente é utilizado na produção de etanol de segunda geração.

Dessa forma, neste trabalho, estes 3 resíduos da industria sucroalcooleira serão avaliados como fonte de cera da cana de açúcar, bem como serão estudados como os parâmetros de processo (granulometria, solvente, tempo) que influenciam o processo de extração.


2. MATERIAIS E MÉTODOS

2.1. Resíduos

A casca da cana-de-açúcar utilizada foi gentilmente cedida pelo sítio Santo Antônio, localizado na cidade de Rio Claro (SP). O sítio retira a casca da cana antes de enviá-la aos garapeiros. A variedade da cana cedida é a RB 96 6928, da safra 2015. A torta do filtro utilizada foi gentilmente cedida pela Usina Costa Pinto, localizada na cidade de Piracicaba (SP). E o bagaço de cana de açúcar foi gentilmente fornecido pelo Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE) do Centro Nacional de Pesquisas em Energia e Materiais (CNPEM), localizado em Campinas.

2.2 Preparação dos resíduos

A casca, a torta e o bagaço de cana-de-açúcar foram moídos em moinho elétrico do tipo martelo (Tigre, S.A, CV2, Brasil) acoplado a um motor de indução de 3800 rpm, CV5 (General Eletric Brasil). A seguir, foram secos e classificados utilizando um agitador magnético e a seguinte série de peneiras Tyler: 16, 24, 42, 80, 170 e 250. A umidade dos materiais foi determinada através de uma balança de infravermelho, de marca GEHAKA, modelo IV 2000.

2.3. Extração da cera bruta

Para montagem do sistema de extração, primeiramente foram pesados o barbante e o papel de filtro utilizados na confecção dos cartuchos. Os cartuchos foram preparados com cerca de 10g de biomassa. A seguir, os cartuchos foram colocados dentro do extrator Soxhlet, o qual foi montado sobre uma chapa de aquecimento junto com o balão de 250 ml contendo o solvente extrator. A massa do balão também foi determinada antes da extração. Os tempos, tamanhos das partículas, tipos e quantidades de solventes foram variados em cada ensaio conforme descrito a seguir. Após a extração, o solvente foi evaporado em um evaporador rotativo, a baixa pressão. Os balões com a cera bruta permaneceram na estufa para completar a secagem até que as massas das amostras permanecessem constantes. A seguir procedeu-se o cálculo do rendimento, rendimento médio, e desvio padrão de acordo com as equações de 1 a 3. Todos os ensaios foram realizados em duplicatas (n=2).

$$Rendimento(x) = \frac{massa\ de\ cera\ extraída}{massa\ de\ matéria-prima} \tag{1}$$

Rendimento médio
$$(\bar{x}) = \frac{rendimento 1 + rendimento 2}{2}$$
 (2)

Desvio padrão =
$$\sqrt{\frac{\sum (x-\bar{x})^2}{(n-1)}}$$
 (3)

Em todas as extrações foram utilizados 200 mL de solvente 4h de extração, com exceção dos casos especificados. Para avaliação dos resíduos utilizou-se a casca, a torta e o bagaço. Na análise da influência do solvente foram utilizados hexano, etanol e água. Avaliando a quantidade de solvente foram utilizados 200, 250 e 300mL de hexano. Analisando o tamanho da partícula foram utilizados os materiais retidos mas peneiras Tyler 42,80 e 170. Por fim, avaliou-se a influência do tempo utilizando 1; 2,5 e 4h. Antes das extrações os resíduos apresentaram aproximadamente 8% de umidade.

3. RESULTADOS E DISCUSSÃO

Avaliando o teor de cera bruta nas diferentes resíduos estudados, verificou-se que a casca da cana de açúcar apresentou o maior rendimento (7,28%) quando comparada a torta do filtro rotativo (3,11%) e o bagaço de cana (0,85%), conforme pode ser observado na Tabela 1. Normalmente, as ceras produzidas pelas espécies vegetais concentram-se na superfícies externas das plantas e tem como principal função reduzir as perdas de água da planta para o ambiente, o que justifica a obtenção de uma quantidade maior de cera para a casca da cana de açúcar. Como a casca de cana de açúcar foi a que apresentou o maior rendimento em cera, ela foi utilizada no estudo da influência dos demais parâmetros na extração de cera.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

Tabela 1 - Rendimento de cera para diferentes resíduos

Resíduo	Massa de resíduo (g)	Massa de cera (g)	Rendimento (%)	Rendimento Médio (%)	Desvio Padrão
Torta de	10,90	0,50	4,60	3,11	2,10
filtro	10,15	0,17	1,63		
Casca	10,25	0,74	7,24	7,28	0,06
	10,13	0,75	7,32		
Bagaço	10,27	0,08	0,73	0,85	0,17
	10,29	0,10	0,97		

Com relação aos diferentes solventes utilizados: água, etanol e hexano, nota-se, na Tabela 2, que a extração realizada a partir do etanol foi a que apresentou um maior rendimento (16,61%), seguida pela extração com água (10,88%) e Hexano (6,22%). Essa diferença deve-se principalmente a polaridade dos solventes utilizados, que influencia no seu poder de solvência e faz com que diferentes classes de substâncias se solubilizem durante a extração. A água sendo a substância mais polar entre as estudadas tende a extrair materiais também polares, o hexano sendo apolar tende a extrair os componentes mais apolares. O etanol, devido a sua estrutura composta por uma cadeia alquila e uma hidroxila, pode solubilizar tanto as substâncias polares quanto apolares, justificando assim os maiores rendimentos obtidos com a utilização deste solvente.

Tabela 2 - Influência dos tipos de solventes no processo de extração

Tipo de Solvente (ml)	Massa de resíduo (g)	Massa de cera (g)	Rendimento (%)	Rendimento Médio (%)	Desvio Padrão
Água	10,20	0,97	9,54	10.00	1,89
	10,00	1,22	12,21	10,88	
Etanol	10,17	1,70	16,72	16,61	0,16
	10,21	1,68	16,50	10,01	
Hexano	10,14	0,63	6,20	6.22	0,03
	10,12	0,63	6,24	6,22	

A Figura 1 evidencia a aparência dos diferentes extratos obtidos com diferentes solventes. Como as ceras são compostas principalmente por hidrocarbonetos, ésteres graxos e alcoóis e ácidos graxos, procedeu-se as demais análises com hexano para minimizar a extração de outros componentes, principalmente os polares, que poderiam aumentar as impurezas da cera.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

Figura 1 - Aspecto dos extratos obtidos com diferentes solventes

Após a definição do hexano como solvente extrator, avaliou-se se a quantidade de solvente influenciaria os rendimentos de cera obtidos. Por isso, foram realizadas extrações com 200, 250 e 300 mL de hexano conforme pode ser observado na Tabela 3. Os resultados sugerem que com o aumento da quantidade de solvente diminui-se o rendimento de cera, entretanto, os rendimentos obtidos para as diferentes quantidades de solvente utilizados são muito próximos, não podendo-se afirmar que existente uma tendência realmente clara.

Tabela 3- Influência da quantidade de solvente no processo de extração

Quantidade de Solventes (mL)	Massa de resíduo (g)	Massa de Cera (g)	Rendimento (%)	Rendimento Médio (%)	Desvio Padrão	
200	10,02	0,72	7,26	7,22	0,04	
	10,02	0,72	7,18	1,22	0,04	
250	10,04	0,70	6,98	7 15	0.24	
	10,06	0,73	7,32	7,15	0,24	
300	10,05	0,69	6,93	6,80	0.10	
	10,09	0,67	6,67	0,80	0,18	

Na Tabela 4, apresenta-se os rendimentos médios de extração para as granulometrias dos Tylers 42, 80 e 170, os quais correspondem a 2,85; 7,73 e 9,73%, respectivamente. Verifica-se que quanto menor o tamanho da partícula (e consequentemente maior Tyler), maior o rendimento de cera. O tamanho da partícula exerce uma grande influência no processo de extração, uma vez que partículas menores apresentam maior área superficial, favorecendo o contato sólido-fluido, e propiciando um maior rendimento da cera bruta.

Na Tabela 5, verifica-se a influência do tempo no processo de extração. Nota-se que com a extração realizada por um período de 1h obteve-se 5,9% de cera bruta, enquanto que com a realizada durante 2,5h houve um aumento significativo do rendimento de cera (6,75%),

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

aproximadamente 0,8g. De 2,5 para 4h, o resultado de rendimento praticamente não se alterou.

Tabela 4 - Influência do tamanho da partícula na extração da cera

Granulometria (Tyler)	Massa de resíduo (g)	Massa da cera (g)	Rendimento (%)	Rendimento Médio (%)	Desvio Padrão
	10,66	0,23	2,2		
42	10,63	0,37	3,49	2,85	0,912
	10,07	0,79	7,91		
80	10,03	0,75	7,55	7,73	0,255
	10,02	0,99	9,88		
170	10,03	0,96	9,58	9,73	0,212

Tabela 5 - Influência do tempo no processo de extração

	Massa de resíduo	Massa de cera	Rendimento	Rendimento	
Tempo (h)	(g)	(g)	(%)	Médio (%)	Desvio Padrão
	10,20	0,57	5,59	5,90	0,43
1	10,00	0,621	6,20	3,70	0,43
	10,06	0,68	6,85	6,75	0,13
2,5	10,07	0,67	6,6	0,73	0,13
	10,02	0,65	6,4	6,64	0,21
4	10,03	0,68	6,80	0,04	0,21

4. CONCLUSÕES

Dentre os 3 resíduos avaliados neste trabalho, a casca da cana de açúcar foi o que apresentou o maior teor de cera. A granulometria do material foi um dos fatores que mais influenciou os rendimentos de cera bruta, sendo que, menores tamanhos de partícula conduzem a maiores rendimentos de cera. A quantidade de solvente e o tempo de extração, dentro das condições estudadas, praticamente não impactaram os valores de rendimento.

5.REFERÊNCIAS

CONAB - Companhia Nacional de Abastecimento. *Acompanhamento da Safra Brasileira de Cana de Açúcar, v. 2 – Safra 2015/16, n.2 – Segundo levantamento*, Brasília, p. 1-33, 2015.

6. AGRADECIMENTOS

Os autores agradecem a oportunidade e o suporte financeiro do CNPq/PIBIC- EM, FAEPEX/PRP/UNICAMP (519.292-0307/16) e a FAPESP (2015/25384-1).