

TRANSFERÊNCIA DE OXIGÊNIO E TEMPO DE CIRCULAÇÃO EM BIORREATORES *AIRLIFT SPLIT* COM DIFERENTES GEOMETRIAS DA REGIÃO DE MISTURA

A. C. MEIRA¹, M. N. ESPERANÇA¹ e A. C. BADINO¹

¹Universidade Federal de São Carlos, Departamento de Engenharia Química E-mail para contato: alanacm8@gmail.com

RESUMO – O presente trabalho avaliou a influência da geometria da região de mistura no desempenho de biorreatores *airlift split*. Para isso, foram analisados os parâmetros transferência de oxigênio e tempo de circulação para diferentes geometrias, variando-se o ângulo e a fração volumétrica de líquido contida na região de mistura e utilizando biorreator de 10 L de volume útil e água destilada como fluido. Verificou-se que a geometria da região de mistura possui influência significativa apenas na transferência de oxigênio.

1. INTRODUÇÃO

Os biorreatores não convencionais pneumáticos tipo coluna de bolhas e tipo *airlift* têm merecido destaque no campo da biotecnologia devido a características como baixo consumo de energia, capacidade relativamente alta de transferir oxigênio para o meio de cultura, ausência de partes móveis e facilidade de construção, operação e aumento de escala. Por isso, esses biorreatores têm se mostrado uma alternativa promissora ao biorreator convencional tipo tanque agitado e aerado (THOMASI 2010).

O desempenho de biorreatores pneumáticos tipo *airlift* é avaliado através de parâmetros como o coeficiente volumétrico de transferência de oxigênio (k_La) e o tempo de circulação (t_c). Além de depender da vazão de alimentação do ar (ϕ_{AR}) e do fluido presente no equipamento, estes parâmetros são influenciados pela geometria do biorreator, tendo como destaque a região de mistura, que proporciona o desprendimento de parte do gás e, consequentemente, a circulação do líquido. Assim, o presente estudo avaliou a influência da geometria da região de mistura em biorreatores *airlift* de circulação interna do tipo *split*, variando-se o ângulo (α) e a fração volumétrica de líquido contida na região de mistura (FV_{L,RM}).

2. MATERIAIS E MÉTODOS

2.1. Biorreatores

Os experimentos foram conduzidos em biorreatores *airlift split* de 10 L de volume útil, confeccionados em acrílico. Estes equipamentos eram compostos por um corpo principal, que possui 160 mm de diâmetro, associado a um corpo cônico (Figura 1) e equipados com um aspersor do tipo "espinha de peixe", com furos de 0,5 mm de diâmetro, espaçados de 5 a 5 mm. A avaliação do efeito da geometria da região de mistura do biorreator *airlift* foi realizada utilizando-se diferentes ângulos e frações de líquido da região de mistura. A fração volumétrica

de líquido na região de mistura é definida como a razão entre o volume de líquido contido na região de mistura para o sistema não aerado ($V_{L,RM}$) e o volume de líquido total do biorreator (V_L) (ESPERANÇA, 2014), conforme a Equação 1:

$$FV_{L,RM} = \frac{V_{L,RM}}{V_L}$$

Figura 1 – Esquema de um biorreator *airlift split* com região de mistura expandida.

(Acervo pessoal)

Água destilada (μ =8,7.10⁻⁴ Pa.s) foi utilizada como fluido modelo nos ensaios.

2.2. Condições Experimentais

Para avaliar a influência da geometria da região de mistura (α , ângulo; e FV_{L,RM}, fração volumétrica de líquido na região de mistura) e da vazão específica de ar (ϕ_{AR}) sobre os parâmetros de desempenho, foi empregada a metodologia de delineamento composto central rotacional (DCCR) (RODRIGUES e IEMMA, 2005), cujos valores reais e codificados das variáveis independentes são apresentados na Tabela 1.

		Níveis					
Variável	Código	-1,68	-1	0	1	1,68	
α (°)	x ₁	30	42	60	78	90	
$FV_{L,RM}(-)$	x ₂	0,10	0,14	0,20	0,26	0,30	
Φ_{AR} (vvm)	X ₃	1,0	1,8	3,0	4,2	5,0	

Tabela 1 - Valores reais e codificados das variáveis independentes.

Através de um *software* estatístico (STATISTICA v. 7.0) os resultados foram analisados, avaliando-se os efeitos das variáveis independentes, além de se determinar os fatores estatisticamente significativos a um nível de significância de 10% (Intervalo de confiança de 90%).

(1)

2.3. Determinação do coeficiente volumétrico de transferência de oxigênio

O coeficiente volumétrico de transferência de oxigênio (k_La) foi determinado através do método dinâmico (CHISTI, 1989), considerando-se o atraso da resposta do eletrodo de primeira ordem (Aiba, Humphrey e Millis, 1973). Este método consiste em utilizar um eletrodo para medir a concentração de oxigênio dissolvido no meio líquido (C_e), promovendo-se uma alteração nesta concentração a partir de um ensaio degrau ($N_2 \rightarrow Ar$). Através de um sistema de aquisição de dados em tempo real, obteve-se um perfil de C_e em função do tempo (t).

O valor de k_La foi obtido ajustando-se a Equação (2) aos dados experimentais de concentração de oxigênio dissolvido em função do tempo através de regressão não-linear, conhecido o valor de k_e .

$$C_e = C_{e0} \cdot e^{-k_e \cdot (t-t_0)} + C_{eS} \cdot \left(1 - e^{-k_e \cdot (t-t_0)}\right) + \frac{k_e \cdot \left(C_{eS} - C_{O_{2_0}}\right)}{k_e - k_L a} \cdot \left(e^{-k_e \cdot (t-t_0)} - e^{-k_L a \cdot (t-t_0)}\right) (2)$$

sendo:

 C_{e0} : concentração de oxigênio dissolvido medida pelo eletrodo na condição inicial. C_{eS} : concentração de oxigênio dissolvido medida pelo eletrodo na condição de saturação.

2.4. Determinação do tempo de circulação

O tempo de circulação (t_c) foi determinado através do método da esfera (VASCONCELOS et al., 2003), no qual uma partícula de densidade semelhante à do fluido utilizado é inserida no biorreator em funcionamento. Com o auxílio de uma câmera fotográfica, a região da base do biorreator foi filmada durante 2 minutos, permitindo assim a determinação do número de voltas completas (n) da esfera no biorreator para um determinado intervalo de tempo (Δt). O tempo de circulação é dado pela Equação 3.

$$t_C = \frac{\Delta t}{n} \tag{3}$$

3. RESULTADOS E DISCUSSÃO

Os resultados de k_La e de te para biorreatores *airlift split* operando com água destilada a 32°C são apresentados na Tabela 2.

Observa-se pela Tabela 2, que ocorreu uma variação de k_La de 0,0163 s⁻¹ a 0,0633 s⁻¹. Este intervalo de variação foi semelhante ao obtido por Esperança (2014) em biorreator *airlift* de dutos concêntricos de 10 L, operando com água destilada, que variaram de 0,0208 s⁻¹ a 0,0683 s⁻¹. Além disso, foi possível observar que a faixa de tempo de circulação variou de 3,43 s a 5,50 s. O intervalo foi semelhante ao encontrado por Cerri (2009) em biorreator airlift de 10 L, operando com água destilada, que variou de 2,54 s a 4,53 s.

A análise de variância (ANOVA) com intervalo de confiança de 90% resultou no modelo refinado descrito pela Equação 4 para o k_La e na Equação 5 para o t_C . Para ambos parâmetros de desempenho, o valor de F calculado foi pelo menos 5,78 vezes maior do que o tabelado (Tabela 3), validando os modelos para serem utilizados na obtenção de superfícies de resposta.

Tabela 2 - Matriz do DCCR com resultados de k_La e t_C para biorreatores *airlift split* operando com água destilada.

Ensaios	x ₁	X ₂	X ₃	$k_L a(s^{-1})$	$t_{C}(s)$
1	-1	-1	-1	0,0360	4,20
2	1	-1	-1	0,0304	4,23
3	-1	1	-1	0,0258	4,14
4	1	1	-1	0,0306	4,58
5	-1	-1	1	0,0633	3,81
6	1	-1	1	0,0472	3,87
7	-1	1	1	0,0466	3,43
8	1	1	1	0,0561	3,84
9	-1,68	0	0	0,0339	4,08
10	1,68	0	0	0,0235	3,77
11	0	-1,68	0	0,0438	3,85
12	0	1,68	0	0,0359	4,17
13	0	0	-1,68	0,0163	5,50
14	0	0	1,68	0,0424	3,52
15	0	0	0	0,0345	4,15
16	0	0	0	0,0345	4,04
17	0	0	0	0,0331	3,88

 $k_L a = 0,034 + 0,004. x_2^2 + 0,010. x_3 + 0,005. x_1. x_2$

(4)

(5)

$t_C = 3,931 - 0,405.\,x_3 + 0,164.\,x_3^2$

Tabela 3 – Análise de variância para os modelos que descrevem k_La e t_C em biorreator *airlift split*.

	\mathbf{R}^2	F _{tab}	F _{calc}	F _{tab} /F _{calc}
k _L a	0,77	2,56	14,8	5,78
t _C	0,76	2,73	21,9	8,02

Analisando-se a Equação 4, verifica-se a influência da geometria da região de mistura e da vazão específica do ar na determinação do k_La . Já em relação ao t_C , ao analisar a Equação 5, verifica-se apenas a influência da vazão específica do ar. A Figura 2 apresenta uma comparação dos valores de tempo de circulação experimentais e previstos pela Equação 5, notando-se uma distribuição razoável dos pontos.

Para a melhor visualização do impacto das variáveis independentes sobre o k_La , foram geradas superfícies de resposta para esse parâmetro, em função do ângulo de abertura e da fração volumétrica de líquido na região de mistura, fixando-se três vazões diferentes, mostradas na Figura 3.

Figura 3 - Gráfico de contorno do coeficiente volumétrico de transferência de oxigênio em função do ângulo de abertura e da fração de líquido na região de mistura: (a) x₃= -1,68 (φ_{AR}=1,0 vvm); (b) x₃= 0 (φ_{AR}=3,0 vvm); (c) x₃= 1,68 (φ_{AR}=5,0 vvm).

Analisando-se a Figura 3, verificou-se que para ângulos de abertura medianos (60°) e frações volumétricas de líquido na região de mistura de aproximadamente 0,20, foram obtidos baixos valores de k_La, enquanto que para os maiores ângulo e fração de líquido ($\alpha = 90^\circ$ e FV_{L,RM}=0,30) ou para os menores ângulo e fração de líquido ($\alpha = 30^\circ$ e FV_{L,RM}=0,10), foram observados maiores valores de k_La.

4. CONCLUSÕES

O presente trabalho avaliou a influência da geometria da região de mistura em biorreatores *airlift split*. Para isso, foram analisadas as variações dos parâmetros k_La e t_C quanto à ϕ_{AR} , ao ângulo (α) e à fração volumétrica de líquido contida na região de mistura (FV_{L,RM}). Verificou-se influência da geometria apenas na transferência de oxigênio, a qual também é influenciada pela ϕ_{AR} . Neste caso, as melhores condições de transferência de oxigênio foram observadas para biorreatores com ângulos de 90° e fração de líquido de 30% e ângulos de 30° e fração de líquido de 10%. Em relação ao tempo de circulação, verificou-se influência apenas da ϕ_{AR} .

5. REFERÊNCIAS BIBLIOGRÁFICAS

- AIBA, S.; HUMPHREY, A. E.; MILLIS, N. F. Biochemical Engineering. 2nd. Tokio: University of Tokio Press, 1973.
- CERRI, M. O. Hidrodinâmica e transferência de oxigênio em três biorreatores airlift de circulação interna geometricamente semelhantes. 2009. Doutorado em Engenharia Química. Departamento de Engenharia Química, Universidade Federal de São Carlos.
- CHISTI, Y. Airlift bioreactors. Belfast, Northern Ireland: Elsevier Science Publishers Ltd., 1989.
- ESPERANÇA, M. N. Influência de aspectos geométricos na hidrodinâmica e transferência de oxigênio de biorreatores *airlift* de circulação interna.2014. Mestrado em Engenharia Química. Departamento de Engenharia Química, Universidade Federal de São Carlos.
- RODRIGUES, M. I.; IEMMA, A. F. Planejamento de experimentos e otimização de processos: Uma estratégia sequencial de planejamentos. Casa do Pão Editora, 2005.
- THOMASI, S. S. Avaliação de parâmetros de desempenho de três modelos de biorreatores pneumáticos de bancada. 2010. Mestrado em Engenharia Química. Departamento de Engenharia Química, Universidade Federal de São Carlos.
- VASCONCELOS, J. M. T.; RODRIGUES, J. M. L.; ORVALHO, S. C. P.; ALVES, S. S.; MENDES, R. L.; REIS, A. Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors. Chemical Engineering Science, v. 58, n. 8, p. 1431-1440, 2003.