

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

INFLUÊNCIA DAS VARIÁVEIS SUPERSATURAÇÃO E POPULAÇÃO DE SEMENTES NO RENDIMENTO DE ÁCIDO CÍTRICO NA ETAPA DE CRISTALIZAÇÃO

T. T. RODRIGUES¹, H. L. SILVA¹, R. A. O. CAMPOS¹, F. S. LOBATO¹ e R. A. MALAGONI¹

¹ Universidade Federal de Uberlândia, Faculdade de Engenharia Química E-mail para contato: malagoni@ufu.br

RESUMO – O ácido cítrico é uma substância de alta relevância e aplicabilidade na indústria química, de alimentos e farmacêutica. Ele é encontrado em diversas frutas cítricas, sendo um metabólito comum em animais e plantas. A cristalização é uma das etapas finais da produção do ácido cítrico, em que se produz cristais de elevada pureza. O objetivo deste trabalho é estudar a influência das variáveis supersaturação e população de sementes no rendimento do ácido cítrico na etapa de cristalização em um processo a temperatura constante, a 55°C. Os resultados obtidos foram comparados com dados da literatura em que se realizou a cristalização por resfriamento controlado em uma faixa de temperatura de 50°C a 40°C. Concluiu-se que ambas as variáveis interferem no tamanho e na qualidade dos cristais e que o método por resfriamento controlado tem maior rendimento.

1. INTRODUÇÃO

O ácido cítrico ou ácido 2-hidróxido-1,2,3-propanotricarboxílico ($C_6H_8O_7$) é um sólido branco cristalino e inodoro com densidade 1,665 g·cm⁻³ e massa molar 192,13 g·mol⁻¹. Além disso, tem boa solubilidade em água e moderada em etanol (Kirk et al., 1979).

Esse composto é considerado um ácido orgânico fraco encontrado comumente nos citrinos como limão, tangerina e laranja. Algumas de suas aplicações importantes são o controle de crescimento microbiano, o uso como acidulante, a redução de pH em soluções de interesse, a ação quelante e o uso como aromatizante. Industrialmente, sua aplicabilidade se estende à produção de fármacos, alimentos e bebidas (The Columbia Encyclopedia, 2001). Aproximadamente 70% do ácido cítrico produzido é utilizado na indústria alimentícia e de bebidas, 12% na farmacêutica e 18% é destinado a outros usos industriais (Leonel e Cerada, 1995).

Segundo Bessa (2001), na maioria dos processos industriais, o ácido cítrico é produzido a partir da fermentação da sacarose pelo fungo *Aspergillus niger* e, a comercialização, acontece em duas formas: anidra e monohidratada, sendo a temperatura de transição entre essas fases 36,6 °C. Acima desta temperatura, cristaliza-se a forma anidra e abaixo, a forma monohidratada.

De acordo com Mullin (2001), a cristalização fornece um produto com elevado grau de pureza, baixo nível de contaminação, cristais de boa aparência, de fácil manuseio e estocagem.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

Diante do exposto, o objetivo deste trabalho é estudar a influência das variáveis supersaturação e população de sementes no rendimento de ácido cítrico no processo de cristalização a 55°C.

2. MATERIAL E MÉTODOS

2.1. Material

- Cristalizador encamisado de vidro borossilicato;
- Agitador mecânico (Gehaka, modelo AM-20);
- Agitador com propulsor do tipo hélice naval;
- Indicador de temperatura acoplado ao termopar (Full Gauge, modelo TIC-17RGTi);
- Banho termostatizado (Tecnal, modelo TE-184);
- Conjunto de peneiras da marca Bertel constituído por peneiras Tyler 12, 14, 16, 20, 48 e o prato de fundo;
- Vibrador de peneiras (Produtest);
- Balança analítica (Gehaka, AG-200);
- Sementes de ácido cítrico (Cargill, pureza: 99,5%);
- Água destilada e deionizada.

2.2. Métodos

As sementes utilizadas nos ensaios de cristalização foram obtidas por peneiramento usando as peneiras Tyler 12, 14, 16, 20 e o prato de fundo, conforme procedimento de Malagoni (2010) e Teixeira (2011). Na obtenção das sementes, 100 g de ácido cítrico foram peneiradas durante 20 minutos, sendo os cristais retidos na peneira de malha Tyler 20 usados como sementes.

A solubilidade do ácido cítrico anidro em água foi determinada utilizando a correlação de Oliveira $et\ al.$ (2013) em termos da fração molar (x) de ácido cítrico, válida para a faixa de temperatura de 20 a 60°C, conforme apresentado na Equação (1), sendo T a temperatura em kelvin.

$$x = \exp\left(2,053 - \frac{1204,74}{T}\right) \tag{1}$$

Posteriormente, utilizou-se uma base de cálculo de 100 g de água (m_2) e com a Equação (2) foi encontrado a massa de ácido cítrico (m_1) , podendo se calcular a concentração de equilíbrio (C^*) em g/100 de água.

$$x = \frac{m_1 / M_1}{(m_1 / M_1) + (m_2 / M_2)} \tag{2}$$

A concentração na condição de supersaturação (C) é calculada pela Equação (3), a partir do grau de supersaturação (S) desejado e da concentração de equilíbrio ou na condição de saturação (C^*) .

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

$$S = \frac{C}{C^*} \tag{3}$$

Com o valor da concentração na supersaturação, quantificam-se as massas de ácido cítrico e água necessárias no preparo da solução supersaturada a 55°C. As massas de ácido cítrico e água foram quantificadas utilizando uma balança analítica de precisão ± 0,0001 g, sendo na sequência, adicionadas ao cristalizador encamisado. A solução com um volume de 291 mL foi preparada sob agitação de 198 rpm a 75°C até que ocorresse a dissolução total do soluto. Posteriormente, o *set point* do banho termostatizado foi ajustado de forma que a solução no cristalizador permanecesse a 55°C, obtendo-se o grau de supersaturação desejado.

As sementes de ácido cítrico passaram por um processo de cura, ou seja, foram lavadas com uma solução quase saturada a 25°C e, posteriormente, elas foram adicionadas ao cristalizador. O agitador foi acionado a uma rotação de 198 rpm, mantendo-se a temperatura de cristalização constante. As amostras foram retiradas a cada 16 minutos, totalizando 10 amostras por experimento. As amostras foram retiradas do cristalizador utilizando uma peneira Tyler 48 pré-aquecida a 60°C. Os cristais foram lavados utilizando 5 mL de uma solução de clorofórmio 98% e então levados a estufa a 60°C por 24 horas.

O rendimento (y) do processo de cristalização foi calculado através da Equação (4), sendo (m_f) a massa final de ácido cítrico medida após 24 horas de secagem e (m_s) a massa das sementes.

$$y(\%) = \left(\frac{m_f}{m_s} - 1\right) \times 100\tag{4}$$

Os resultados experimentais de rendimento de ácido cítrico na etapa de cristalização foram obtidos a partir de um Planejamento Composto Central (PCC) constituído por 11 experimentos e três réplicas no ponto central, no qual se analisou as variáveis: grau de supersaturação (x_1) e a população de sementes (x_2).

3. RESULTADOS E DISCUSSÃO

A Tabela 1 apresenta os resultados experimentais de rendimento obtidos neste trabalho a partir do PCC. Observa-se que o maior rendimento foi de 277,32%, para o nível superior de supersaturação (+1) e para o nível inferior de população de sementes (-1), ou seja, em uma condição de menor competitividade, os cristais crescem mais já que estão em um meio com maior disponibilidade de soluto. O menor rendimento foi de 143,28%, o que já era esperado, pois estava se operando no nível superior de sementes (+1) e no nível inferior de supersaturação (-1), muitas sementes em um meio com menor disponibilidade de soluto para promover a cristalização. Considerando os 11 experimentos verifica-se que o rendimento médio foi de 198,06%.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

Tabela 1 – Matriz do PCC com a resposta rendimento.

Experimento	x_1	Grau de Supersaturação (-)	x_2	Quantidade de sementes (g)	Rendimento (%)
1	-1,00	1,10	-1,00	23,80	233,55
2	-1,00	1,10	1,00	37,40	143,28
3	1,00	1,20	-1,00	23,80	277,32
4	1,00	1,20	1,00	37,40	169,54
5	-1,41	1,08	0,00	30,60	173,92
6	1,41	1,22	0,00	30,60	270,25
7	0,00	1,15	-1,41	20,98	196,24
8	0,00	1,15	1,41	40,21	159,16
9	0,00	1,15	0,00	30,60	186,46
10	0,00	1,15	0,00	30,60	181,16
11	0,00	1,15	0,00	30,60	187,73

A Tabela 2 traz os resultados de Castro (2016), em que os experimentos foram realizados utilizando também um PCC, com os mesmos valores de supersaturação e quantidade de sementes, entretanto, com o processo de cristalização ocorrendo por resfriamento, em que se variou a temperatura de 50 a 40°C.

Tabela 2 – Resultados de cristalização de Castro (2016).

	1 40 014 2	resultatos de elistanzação de Castro (2010).			
		Grau de		Quantidade	Rendimento
Experimento	x_1	Supersaturação	x_2	de sementes	(%)
		(-)		(g)	(70)
1	-1,00	1,10	-1,00	23,80	195,11
2	-1,00	1,10	1,00	37,40	162,65
3	1,00	1,20	-1,00	23,80	272,62
4	1,00	1,20	1,00	37,40	193,29
5	-1,41	1,08	0,00	30,60	153,85
6	1,41	1,22	0,00	30,60	262,86
7	0,00	1,15	-1,41	20,98	256,78
8	0,00	1,15	1,41	40,21	162,95
9	0,00	1,15	0,00	30,60	196,34
10	0,00	1,15	0,00	30,60	202,33
11	0,00	1,15	0,00	30,60	194,68

Pela Tabela 2, a partir dos valores de rendimento apresentados, determina-se o valor médio de rendimento, igual a 204,86%, ou seja, um pouco acima do valor médio de 198,06% obtido em experimentos de cristalização a temperatura constante. Nota-se que em processos de cristalização por resfriamento controlado, a supersaturação mantém-se constante durante todo o experimento, proporcionado maior rendimento no processo de cristalização.

No estudo da cristalização do ácido cítrico, Teixeira (2011) obteve um rendimento máximo de 165,31% e Malagoni (2010) 157%, ambos em processos de cristalização em leito

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

vibrado. Dessa forma, nota-se que em processo de cristalização realizado em cristalizador batelada agitado os valores de rendimento foram maiores.

4. CONCLUSÃO

Os resultados experimentais obtidos foram satisfatórios por estarem em consonância com o que era esperado de acordo com a teoria. Ambas as variáveis estudadas apresentaram efeito sobre o rendimento do ácido cítrico no processo de cristalização, alcançando níveis de rendimento de até 277,32%, sendo maiores que os resultados dispostos na literatura para processos de cristalização em leito vibrado. De acordo com os resultados, o melhor rendimento de ácido cítrico aconteceu para um grau de supersaturação elevado e baixa população de sementes.

Comparando o rendimento dos experimentos realizados à temperatura constante com os experimentos em temperatura variável, nota-se que quando ocorre um resfriamento controlado, o rendimento é superior. Este ponto indica que o rendimento do ácido cítrico sofre a influência da temperatura e a cristalização é mais efetiva quando há uma variação controlada da temperatura.

5. NOMENCLATURA

Símbolo	Descrição	Unidade
C	Concentração do sistema	[g∙g de água⁻¹]
C^*	Concentração de saturação na temperatura do sistema	[g∙g de água ⁻¹]
m_1	Massa de ácido cítrico	[g]
M_1	Massa molecular do ácido cítrico	[g·mol ⁻¹]
m_2	Massa de água	[g]
M_2	Massa molecular da água	[g·mol ⁻¹]
m_f	Massa final do ácido cítrico	[g]
$m_{\scriptscriptstyle S}$	Massa de sementes	[g]
S	Grau de supersaturação	[-]
T	Temperatura de operação	[K]
x_1	Variável codificada do grau de supersaturação	[-]
x_2	Variável codificada da população de semente	[-]

6. REFERÊNCIAS

BESSA, J. A. de A. *Cristalização de ácido cítrico – influência da agitação com paleta rotativa e com discos vibrados.* 2001. 93 f. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de Uberlândia, Uberlândia, 2001.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

- CASTRO, C. C. Estudo numérico-experimental da etapa de cristalização do ácido cítrico. 2016. 127 f. Dissertação (Mestrado em Engenharia Química) Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Uberlândia, 2016.
- KIRK, R. E.; OTHMER, D. F.; GRAYSON, M.; ECKROTH, D. *Kirk-othmer encyclopedia of chemical technology*. V. 6. 1. ed. New York: John Wiley & Sons, 1979. 869 p.
- LEONEL, M.; CERADA, M. P. Manipueira como substrato na biossíntese de ácido cítrico por *Aspergillus niger. Science Agricultural*, 52, 2, p. 299-304, 1995.
- MALAGONI, R.A. *Cristalização de ácido cítrico em leito vibrado*. 2010. 297 f. Tese (Doutorado em Engenharia Química) Universidade Federal de Uberlândia, Programa Pós-Graduação em Engenharia Química, Uberlândia, 2010.
- MULLIN, J. W. Crystallization. 4. ed. Oxford: Butterworth-Heinemann, 2001. 594 p.
- OLIVEIRA, M. L. N.; MALAGONI, R. A.; FRANCO, M. R. Solubility of citric acid in water, etanol, n-propanol and in mixtures of etanol+water. *Fluid Phase Equilibria*, v. 352, p. 110-113, 2013
- TEIXEIRA, G. A. Estudo da produtividade no processo de cristalização de ácido cítrico em leito vibrado. 2011. 144 f. Dissertação (Mestrado em Engenharia Química) Universidade Federal de Uberlândia, Uberlândia, 2011.
- THE COLUMBIA ENCYCLOPEDIA. *Encyclopedia*. 6.ed. New York: Columbia University Press, 2001. 3200 p.

7. AGRADECIMENTOS

Os autores agradecem ao CNPq pela bolsa de Iniciação Científica (PIBIC CNPQ2016-ENG011), a PROGRAD/UFU pela bolsa de Apoio aos Laboratórios de Ensino (2016PBG-PROJETO223) e à Faculdade de Engenharia Química da Universidade Federal de Uberlândia pela estrutura física disponibilizada para o desenvolvimento desta pesquisa no Laboratório de Cristalização.