

ESTUDO DA SECAGEM DE PARTÍCULAS DE AMIDO-ALGINATO PRODUZIDAS POR GELIFICAÇÃO IÔNICA

G. B. LIMA, G. C. DACANAL*

Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos *E-mail para contato: gdacanal@usp.br

RESUMO - Neste trabalho estudou-se a cinética de secagem de partículas de amido de milho aglomeradas pelo método de gotejamento. As partículas produzidas foram submetidas à secagem em estufa convectiva a 60 °C com velocidade do ar a 0,2 m/s. Durante a secagem, as amostras foram pesadas em intervalos de 5 min, em um tempo total de 120 minutos. As amostras permaneceram por mais 20 h de secagem, para a determinação da umidade de equilíbrio, que foi igual a 5,08 %. As partículas aglomeradas foram fotografadas, a fim de se mensurar os parâmetros de forma, o tamanho médio e o encolhimento das partículas durante a secagem. O diâmetro médio de partículas reduziu de 2254 µm para 1809 µm, em 120 min de secagem. O conteúdo de umidade, em base úmida, reduziu de 63,9 % para 5,45 %. O efeito de encolhimento não resultou na alteração da forma das partículas, uma vez que os valores de circularidade (0,85), arredondamento (0,91), elongação (1,11) e compacidade (0,94) foram mantidos constantes. O valor do Span, ou dispersão da distribuição de tamanho de partículas, manteve-se ao redor de 0.30 ± 0.1 , o que indica que ao longo do tempo de secagem as partículas com maiores e menores tamanhos apresentaram a mesma taxa de encolhimento. O perfil de cinética de secagem de umidade adimensional, em base seca, apresentou bom ajuste para o modelo de Page ($R^2 = 0.9994$) e para a solução analítica do modelo de difusão de Fick para uma esfera ($R^2 = 0.9573$). O valor da difusividade mássica foi igual a $8.2 \cdot 10^{11} m^2 s^{-1}$.

1. INTRODUÇÃO

A secagem é um processo utilizado para a remoção de umidade, visando à conservação de produtos alimentícios e/ou modificação de sua estrutura, além de minimizar os pesos para o transporte (ROSSELLÓ et al., 1996). Em engenharia, a secagem é compreendida por ser uma combinação dos processos de transferência de calor e de massa. A água e outros fluídos voláteis, são evaporados da amostra a fim de produzir um sólido com teor de umidade inferior ao inicial. A transferência de massa ocorre por meio da difusão e/ou convecção entre o sólido úmido e o ar de secagem. Compreender e projetar um processo de secagem envolve a medição de parâmetros de processo e cálculo dos balanços de massa e energia, da termodinâmica, das taxas de transferência de massa e calor e das considerações sobre a qualidade do produto como, por exemplo, o encolhimento. (GENSKOW et al., 2008). Neste trabalho foi realizado o estudo da cinética de secagem de partículas esféricas de amido de milho e alginato de sódio produzidas a partir da gelificação iônica em cloreto de cálcio. A

partir dos ensaios experimentais e modelagem matemática, obteve-se o valor da difusividade efetiva para estas partículas.

2. MATÉRIAIS E MÉTODOS

2.1. Preparo da suspensão de amido-alginato

O preparo das soluções e suspensões foram planejados utilizando-se as formulações em base-seca. Primeiramente, preparou-se amostras de 100 g de solução aquosa de alginato de sódio (3,5 % w/w), a partir da homogeneização de 96,5 g de água destilada e 3,5 g de alginato de sódio. Posteriormente, foi adicionado 31,5 g de amido de milho, previamente seco em estufa. Desta forma, após as etapas de gelificação iônica e secagem em estufa, foi possível produzir partículas secas com composição de 90% de amido de milho e 10% de alginato de cálcio.

2.2. Produção de partículas aglomeradas por gotejamento

O método "dripping" consiste no gotejamento da suspensão amido-alginato em solução de cloreto de cálcio (1%). Por meio da troca iônica entre os íons de cálcio e o alginato de sódio, a gotas formam um gel rígido, e ocorre a consolidação da partícula aglomerada. No decorrer do processo de gotejamento, a suspensão foi mantida em agitação constante (220 RPM), em um agitador mecânico de 4 pás. A suspensão foi bombeada através de um tubo plástico, com vazão de 3 mL/min, até o bico gotejador, constituído de uma agulha para com 0,70 mm de diâmetro interno. A agulha foi posicionada no interior de um tubo de silicone, permitindo a passagem de ar comprimido paralelamente ao sentido da formação das gotas, o esquema simplificado do processo é mostrado na Figura 1A. A Figura 1B apresenta a fotografia do dispositivo utilizado. Após o gotejamento, as partículas aglomeradas foram recolhidas por uma peneira com abertura de 150 µm (mesh 100).

Figura 1 – Esquema do método de gotejamento (a) e equipamentos utilizados (b).

2.3. Descrição do experimento de secagem

Cerca de 5 g de partículas úmidas foram distribuídas em placas de Petri e acondicionadas em estufa convectiva à temperatura de 60 °C e com velocidade do ar de 0,20 m/s, como mostra a Fig. 2. A velocidade do ar foi aferida por anemômetro de fio quente

(Testo 425, Alemanha). No período de 120 min obteve-se o perfil de cinética de secagem, pesando-se as amostras em uma balança analítica a cada 5 min. Foi utilizado um esquema de rodízio entre as placas, anotando-se a massa da amostra e o tempo de duração da secagem. Após a cinética de secagem, as amostras foram mantidas na estufa, por mais 20 horas. Por fim, determinou-se a umidade de equilíbrio em uma balança de halogênio.

Figura 2 – Fotografia do interior da estufa utilizada, com as amostras em placas de Petri durante a secagem a 60 °C e velocidade do ar a 0,2 m/s.

2.4. Determinação da umidade

Após a etapa de secagem, foi obtida a umidade de equilíbrio $(U_{b.u.})$, em base úmida, em uma balança de halogênio a 120 °C (Eq. 1). A partir deste valor, foi possível encontrar a umidade em base seca $(U_{b.s.})$ das partículas, pela Eq. 2. A umidade adimensional em base seca foi obtida pela razão Eq. 3.

$$U_{b.u.} = \frac{m_{água}}{m_{amostra}} \tag{1}$$

$$U_{b.s.} = \frac{U_{b.u.}}{1 - U_{b.u.}}$$
(2)

$$X_{bs}(t) = \frac{U_{b.s.}(t) - U_{eq}}{U_{i-}U_{eq}}$$
(3)

2.5. Ajuste de modelos matemáticos ao perfil de secagem

O modelo exponencial de Page foi utilizado para ajustar os dados experimentais da secagem (Eq. 5), sendo k e b os parâmetros de regressão do modelo.

$$\frac{U_{b.s.}(t) - U_{eq}}{U_{i-}U_{eq}} = e^{(-kt^b)}$$
(4)

A Eq. 5 apresenta a solução da segunda lei de Fick para coordenadas esféricas, desprezando-se o encolhimento (Crank, 1975). Utilizando-se o MS Excel, foi possível determinar a difusividade efetiva para a secagem das esferas de géis nas condições de secagem de 60 °C e 0,2 m/s.

$$\frac{U_{b.s.}(t) - U_{eq}}{U_{i-}U_{eq}} = \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left[-\frac{n^2 \pi^2 D_e t}{R_e^2}\right]$$
(5)

Os ajustes dos modelos foram obtidos pela ferramenta Solver do software MS Excel. Os parâmetros ajustados, produziram o menor erro entre os valores experimentais e preditos. Por fim, foi calculado o coeficiente de determinação do modelo (R²), a fim de se avaliar a qualidade do ajuste dos modelos aos dados experimentais.

2.6. Distribuição de tamanho das partículas

Durante a cinética de secagem, as partículas foram fotografadas por um estereomicroscópio (Stereo Discovery V8, Zeiss, Germany), com câmera digital acoplada (Axiocam ICc3, Zeiss), utilizando a escala de ampliação de 1x. As fotografias foram obtidas a cada 20 min a partir do tempo inicial, a fim de se determinar o tamanho médio das esferas. Estas análises de caracterização de tamanho foram realizadas pelo software ImageJ (v1.50i). A partir da fotografia original, utilizou-se diversos filtros de imagem. Primeiramente fez-se a conversão do modo de cor para 8 bit, seguido pela aplicação dos filtros "Gaussian Blur", "Threshold" e "Watershed". Ao final, o software remove as partículas quebradiças e aquelas que estão posicionadas nas bordas da fotografia. Procede-se então as análises de tamanho e forma, obtendo-se os valores de diâmetro médio de partículas, dispersão da distribuição de tamanho (span), circularidade, arredondamento, elongação e compacidade.

3. RESULTADOS E DISCUSÃO

3.1. Cinética de Secagem

Em 20 horas de secagem, obteve-se a umidade de equilíbrio em base úmida, igual a $5,08\% \pm 0,19\%$. A partir da umidade de equilíbrio calculou-se a umidade da amostra nos tempos analisados. Com o auxílio do software gráfico "Origin" foi possível obter a média das curvas de secagem, e obteve-se o perfil apresentado na Figura 3. A umidade (b.u.) inicial foi 63,9 %, e decresceu até aproximadamente 50 min de ensaio, atingindo a umidade de 5,45%.

Figura 3 - Curva média da cinética de secagem, obtida a partir do software Origin.

Os pontos do perfil de umidade foram ajustados pelo modelo exponencial de Page (Figura 4a). Considera-se que houve um bom ajuste para a curva de secagem ($\mathbb{R}^2 = 0,9994$), pois a variação entre os dados experimentais e do modelo foi pequena. Os parâmetros k e n obtidos a partir da regressão foram iguais a 0,0028 e 1,7782, respectivamente. Para a solução analítica do modelo de difusão de Fick para uma esfera de raio 1,13 mm, Figura 4b, o valor de \mathbb{R}^2 foi de 0,9573. Portanto, também foi considerado um ajuste bom. A partir da regressão, obteve-se o valor da difusividade mássica efetiva, igual a $8,2 \cdot 10^{11} m^2 s^{-1}$.

Figura 4 – Perfil de cinética de secagem e ajustes pelo modelo exponencial de Page (a) e pelo modelo de difusão de Fick para uma esfera (b).

3.2. Diâmetro médio e tamanho de partículas

A Figura 5 mostra as fotos das partículas ao longo do tempo de secagem. Visualmente, é possível perceber a redução de tamanho médio somente nos primeiros minutos, e com auxílio computacional, pôde-se quantificar que houve um encolhimento foi de até 24%.

Figura 5 – Sequência de fotos durante a secagem em estufa a 60 °C, nos tempos (0, 20, 40, 60, 80, 100, 120) min e ao final das 20 horas.

A Tabela 1 apresenta os resultados obtidos de tamanho e forma, a parter das análises das micrografias no software "ImageJ". Pode-se observar que o tamanho médio diminui nos primeiros 40 minutos de secagem. Os valores de diâmetro médio De Brouckere (D4,3) incidam que nos primeiros 20 min há a maior encolhimento, e depois instante o tamanho das partículas flutua entre (1700 e 1800) μ m. Possivelmente, esta flutuação é decorrente do erro aleatório durante a aquisição das imagens. No entanto, o encolhimento não resultou na alteração da forma das partículas, uma vez que os valores de circularidade (0,85), arredondamento (0,91), elongação (1,11) e compacidade (0,94) foram mantidos constantes durante a secagem. A dispersão da distribuição de tamanho de partículas (span) manteve-se ao redor de 0,30 ± 0,1, o que indica que ao longo do tempo de secagem as partículas com maiores e menores tamanhos apresentaram a mesma taxa de encolhimento.

Tempo	D4,3	Span	Circularidade	Arredondamento	Elongação	Compacidade
(min)	(µm)	(-)	(-)	(-)	(-)	(-)
0	2254,3	0,23	0,85	0,87	1,11	0,94
20	1839,2	0,15	0,85	0,91	1,10	0,95
40	1709,9	0,23	0,86	0,92	1,11	0,94
60	1737,8	0,22	0,86	0,92	1,10	0,95
80	1796,9	0,39	0,85	0,93	1,10	0,95
100	1709,6	0,28	0,86	0,91	1,11	0,94
120	1809,2	0,43	0,86	0,92	1,11	0,94
1440	1729,9	0,35	0,86	0,91	1,11	0,95

4. CONCLUSÕES

A umidade de equilíbrio para as partículas de amido-alginato, nas condições de secagem a 60 °C e 0,2 m/s, foi igual a 5,08%. Observou-se um encolhimento de até 24%, em relação ao tamanho inicial, mas os parâmetros de forma mantiveram-se constantes. Os modelos de Page e modelo de Fick apresentaram bons ajustes, com valor de R² iguais a 0,9994 e 0,9573, respectivamente. A partir do ajuste do modelo de Fick foi possível determinar a difusividade mássica efetiva, igual a $8,2 \cdot 10^{11} m^2 s^{-1}$. Embora o modelo de difusão de Fick apresentou bom ajuste aos dados experimentais, estes valores podem ser aprimorados ao avaliar o encolhimento das partículas ao longo da secagem.

5. NOMENCLATURA

D_e	Difusividade efetiva	(m²/s)
k	Constante empírica do modelo de Page	(s^{-b})
R _e	Raio da esfera	(m)
$U_{b.u.}$	Umidade em base úmida da amostra em um tempo definido	(kg/kg)
U _{b.s.}	Umidade em base seca da amostra em um tempo definido	(kg/kg)
U _{eq}	Umidade de equilíbrio em base úmida	(kg/kg)
Ui	Umidade em base úmida da amostra no instante inicial	(kg/kg)
b	Constante empírica do modelo de Page	(-)
$m_{st gua}$	Massa de água presente na amostra	(kg)
$m_{amostra}$	Massa total da amostra úmida	(kg)
n	Número de termos do somatório na série	(-)
t	Tempo de secagem	(s)
Xbs	Umidade adimensional em base seca	(kg/kg)

6. REFERÊNCIAS

GENSKOW, L.R. et al. Psychrometry, Evaporative Cooling, and Solids Drying. In: PERRY, R. H. et al. Perry's Chemical Engineers, 8 ed., 2008, Cap. 12, p. 1-113.

ROSSELLÓ, C. et al. Drying models for green peas. Foood Chemistry, Espanha, v. 55, n. 2, p.121-128, mar. 1996.