

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

BIOCOMPÓSITOS DE POLÍMERO NATURAL REFORÇADO COM FIBROÍNA: AVALIAÇÃO DO CONTEÚDO DE FIBRAS NO EFEITO DO REFORÇO

C. G. COSTA¹, L. F. R. P. BOM¹, C. R. MARTINS¹, M. A. MORAES¹

¹ Universidade Federal de São Paulo, Departamento de Engenharia Química E-mail para contato: carolgrecosta@gmail.com

RESUMO – A utilização da fibroína como fibra de reforço em biocompósitos torna-se atrativa, especialmente para aplicação em biomateriais, visto que possui entre suas características biocompatibilidade, mínima reação inflamatória e boas propriedades mecânicas. Além da escolha das fibras, a quitosana torna-se interessante para ser utilizada como matriz visto que exibe características como propriedade hemostática, boa permeabilidade ao oxigênio e boa absorção de água. Sendo assim, tendo como foco a utilização de biocompósitos de quitosana reforçados com fibroína para aplicações em curativos de alto desempenho, foi realizado o estudo do conteúdo (fração mássica) de fibras nos biocompósitos de quitosana. No caso do preparo das fibras, foi realizada a remoção da sericina dos casulos utilizando-se Na₂CO₃ 1 g/L e banho termostatizado à 85 °C. Após secas, as fibras foram picadas. Para o preparo da matriz, foi utilizada solução de quitosana 1% (m/v) em ácido acético 2% (v/v). Foram inseridos 20% ou 60% em fração mássica das fibras na matriz e empregou-se o método de casting e evaporação do solvente e reticulação em NaOH 1 mol/L. A membrana com 60% em fração mássica de fibras apresentou um melhor resultado (1,8071 \pm 0,4049) quando analisado com o grau de intumescimento da membrana com 20% (1,4211 ± 0,1312). Já no caso do teste mecânico, a membrana com 20% em fração mássica de fibras mostrou-se mais resistente apresentando tensão de ruptura de 18,743 ± 5,860 MPa, enquanto que a membrana com 60% apresentou tensão de ruptura de $6,820 \pm 3,591$ MPa. Além disso, ambas as membranas não apresentaram perda de massa em PBS, evidenciando eficácia no processo de reticulação. Com isso, como o objetivo é a obtenção de membranas resistentes, maleáveis e com boa absorção, a membrana com 20% em fração mássica de fibras mostrou resultados mais satisfatórios do que a membrana com 60%.

1. INTRODUÇÃO

A fibroína de seda é uma proteína fibrosa produzida pelo bicho-da-seda. É possível a obtenção de até 1000 m de fibras de fibroína de um único casulo pela remoção da sericina por imersão em água fervente ou solução alcalina (Vepari, 2007; Plaza *et al.*, 2008). Sua

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

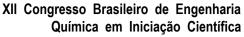
UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

utilização como fibra de reforço em biocompósitos poliméricos para aplicações biomédicas torna-se interessante devido a sua boa biocompatibilidade, biodegradabilidade, mínima reação inflamatória, possibilidade de esterilização e preparo em diversos formatos, boas propriedades mecânicas, permeabilidade ao oxigênio e vapor d'água, alta estabilidade térmica e resistência a microorganismos (Li *et al.*, 2002; Altman *et al.*, 2003).

Além da preocupação com a escolha das fibras, as propriedades da matriz também são essenciais no preparo de biocompósitos. Sendo assim, a utilização da quitosana torna-se interessante, resultando em um biocompósito biocompatível, com potencial para aplicação como biomaterial. A quitosana é um produto da desacetilação da quitina, extraída da carapaça de crustáceos, como o camarão, o caranguejo e o siri, e também de insetos e parede celular de alguns fungos. Ela vem sendo estudada extensivamente como curativo na cicatrização de ferimentos e queimaduras por exibir propriedade hemostática, boa permeabilidade ao oxigênio, boa absorção de água e atuar na migração de fibroblastos e células endoteliais.

Nesse contexto, o estudo de biocompósitos de quitosana reforçado com fibroína para aplicação como curativos torna-se interessante devido à busca de materiais com resistência mecânica, maleabilidade e boa absorção de água.

2. OBJETIVOS


O objetivo desse projeto é o estudo do conteúdo (fração mássica) de fibras de fibroína no reforço de biocompósitos de quitosana para aplicações em curativos de alto desempenho.

3. METODOLOGIA

3.1 Preparação dos biocompósitos

Os biocompósitos foram preparados utilizando casulos do bicho-de-seda. Inicialmente foi feita a remoção da sericina dos casulos, a fim de evitar problemas de hipersensibilidade à seda (Altman *et al.*, 2003). Para isso, cada 50,0 g de matéria-prima foram lavados em 600,0 mL de solução aquosa de Na₂CO₃ 1,0 g/L, durante 30 min, em banho termostatizado, à temperatura de 85 °C. Este procedimento foi repetido três vezes e, ao final, as fibras de fibroína obtidas foram lavadas com água destilada em abundância. As fibras foram secas por 24 a 48 h (Li *et al.*, 2002). Em seguida, as fibras foram picadas com tesoura em pedaços de, aproximadamente, 2,0 a 3,0 mm.

Foi utilizada solução de quitosana 1% (m/v) em ácido acético 2% (v/v) para o preparo da matriz. Foram inseridos 20% ou 60% em massa das fibras na matriz. O método de casting e evaporação do solvente foi empregado para o preparo dos biocompósitos. Em seguida, para a estabilização da quitosana foi necessário realizar a imersão das matrizes em solução de NaOH 1,0 mol/L por 24h.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

3.2 Caracterização das matrizes poliméricas e dos biocompósitos

Antes da realização dos testes, todas as amostras foram equilibradas em umidade relativa de 52 % por 48 h.

Foram realizados testes mecânicos de resistência à tração, a fim de se verificar o efeito de reforço associado à inclusão de diferentes porcentagens das fibras de fibroína nos biocompósitos. Foram obtidas 7 medidas de espessura de uma amostra de 10,0 x 2,5 cm. Em seguida, foi utilizado o "Brookfield Engineering Texture Pro CT v1.2 build 9" sendo as garras distanciadas 5,0 cm e a taxa de deformação ajustada para 0,1 cm/s. Para a realização desse procedimento, a norma ASTM D882 (ASTM, 1995) foi seguida. A partir dos dados obtidos, foi possível determinar a tensão de ruptura da membrana pela Equação 1 e o alongamento na ruptura pela Equação 2. Para o cálculo do Módulo de Young, foram utilizados os valores do módulo tangente da inclinação da curva tensão-deformação durante a fase de elongação elástica.

$$TR = \frac{Fm}{As} \tag{1}$$

$$A = \left(\frac{dr - di}{di}\right)100\tag{2}$$

Também foi feito o estudo do grau de intumescimento das membranas em PBS. Para isso, a massa de uma amostra de 2,0 x 1,0 cm foi quantificada. Em seguida, a amostra foi colocada em 5,0 mL de PBS e pesada a cada intervalo de 30 segundos até que fossem completados 3 minutos. Antes de completar os 3 minutos já havia se observado massa constante. Entretanto, para se obter mais dados, após esse tempo, ela foi pesada a cada 1 minuto até que fossem completados mais 3 minutos. O procedimento foi realizado em triplicata para cada membrana e o grau de intumescimento foi calculado pela Equação 3.

$$GI = \frac{mf - mi}{mi} \tag{3}$$

Além desses dois testes, também foi realizado o teste de perda de massa durante exposição em PBS. Uma amostra retangular de 6,0 x 1,0 cm foi quantificada. Em seguida, foi imersa em 10,0 mL de PBS por 7 dias a 37°C. O corpo de prova foi seco por 24 h, a 37°C, mantido em dessecador com umidade relativa 52% por 48 h e novamente quantificado. O procedimento foi realizado em triplicata para cada membrana e a perda de massa em PBS foi calculada pela Equação 4.

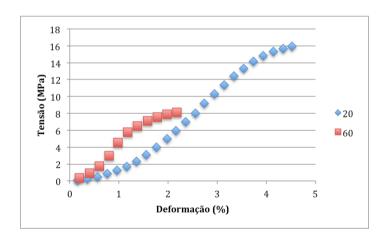
$$Mp = \left(\frac{mi - mf}{mi}\right)100\tag{4}$$

4. RESULTADOS E DISCUSSÕES

O intuito da realização do grau de intumescimento é predizer o comportamento da membrana quando em solução PBS, analisando sua eficiência de absorção. Os resultados do

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

grau de intumescimento estão apresentados na Tabela 1.


Tabela 1 – Grau de intumescimento

Tipo de	GI (g solução PBS/		
membrana	g filme)		
20%	$1,4211 \pm 0,1312$		
60%	$1,8071 \pm 0,4049$		

Nota-se pela Tabela 1 que a membrana que possui 60% em fração mássica de fibras apresentou um maior grau de intumescimento. Isso deve-se ao fato de que as fibras ajudam na absorção da solução. Portanto, ao se ter uma maior quantidade de fibras, uma maior quantidade de solução é absorvida.

A realização do teste mecânico é necessária visto que buscam-se membranas que sejam resistentes e maleáveis. A Figura 1 apresenta o gráfico típico obtido da tensão *versus* deformação para as membranas contendo 20% e 60% de fração mássica de fibras.

Figura 1 - Gráfico típico de tensão *versus* deformação para as membranas contendo 20% e 60% de fração mássica de fibras

A Tabela 2 apresenta os dados médios da espessura, tensão e deformação de ruptura e o Módulo de Young das membranas.

Tabela 2 – Dados médios do teste mecânico para as membranas contendo 20% e 60% de fração mássica de fibras

Tipo de membrana	Espessura (mm)	Tensão de ruptura (MPa)	Elongação na ruptura (%)	Módulo de Young (MPa)
20%	$0,095 \pm 0,030$	$18,743 \pm 5,860$	$3,068 \pm 1,129$	$10,499 \pm 5,167$
60%	$0,165 \pm 0,062$	$6,820 \pm 3,591$	$2,416 \pm 0,732$	$0,131 \pm 0,078$

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

É possível perceber que a membrana de 20% apresentou maior resistência à tensão do que a de 60%. Isso pode ser ao fato de que ao se preparar as membranas, encontrou-se certa dificuldade em homogeneizar as de 60%, já que as fibras se emaranhavam pela alta quantidade presente na mistura de quitosana. Esse fato se evidencia no momento da medição da espessura, que por ser aleatório, por vezes encontrava-se um ponto muito mais elevado por concentração maior de fibra. Desta forma, ocorreu uma elevada variação das medidas de espessura das membranas com 60% de fibras, além de se ter uma baixa uniformidade da dispersão das fibras nas membranas, resultando em pontos mais susceptíveis à fratura durante o teste mecânico.

Além disso, nota-se que a membrana de 20% apresentou uma melhor maleabilidade do que a de 60%, visto que os valores obtidos para a elongação na ruptura para a membrana de 20% foram maiores.

O intuito da análise da perda de massa durante a exposição em solução de PBS é predizer o comportamento da membrana, analisando sua estabilidade. Após a realização do teste, notou-se que tanto a membrana de 20% quanto a de 60% não apresentaram perda de massa, evidenciando a eficácia do processo de reticulação das membranas com a solução de hidróxido de sódio.

5. CONCLUSÃO

Ao se estudar as duas porcentagens em fração mássica de fibras nas membranas, pode-se perceber que ambas as membranas não apresentaram perda de massa. Sendo assim, a reticulação escolhida foi eficiente.

Já no caso do teste mecânico, notou-se que a membrana com 20% de fração mássica de fibras apresentou uma maior resistência mecânica. Entretanto, no caso de curativos, é necessário que, além de resistentes, sejam maleáveis. Portanto, não é apenas a resistência que deve ser estudada. A combinação da resistência mecânica e da maleabilidade é necessária. No caso da maleabilidade, notou-se que a membrana de 20% também apresentou melhor resultado.

Além disso, na análise do grau de intumescimento a membrana com 60% de fração mássica de fibras apresentou resultados melhores. Entretanto, mesmo a de 20% não apresentando resultado melhor do que a de 60% para o grau de intumescimento, analisando-se a combinação dos resultados de todos os testes realizados, a membrana com 20% de fração mássica de fibras apresentou uma melhor combinação de resultados.

6. AGRADECIMENTO

Agradecimento ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo apoio financeiro e concessão de bolsa PIBIC.

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

7. NOMENCLATURA

A: alongamento da ruptura em %;

As: área da seção transversal da amostra do filme em m²;

di: afastamento inicial das garras (0,05 m);

dr: afastamento das garras no momento da ruptura em m;

Fm: força máxima de rompimento em N;

GI: grau de intumescimento;

mf: massa final da amostra após realização do teste em g;

mi: massa inicial da amostra em g;

Mp: porcentagem de perda de massa em PBS;

TR: tensão de ruptura em Pa.

8. REFERÊNCIAS

ALTMAN, G. H. et al. Silk-based biomaterials. *Biomaterials*, v. 24, n. 3, p. 401-416, Feb 2003. ISSN 0142-9612.

ASTM. Tensile properties of thin plastic sheeting. Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, D 882, 1995.

LI, M. Z. et al. Structure and properties of silk fibroin-poly (vinyl alcohol) gel. *International Journal of Biological Macromolecules*, v. 30, n. 2, p. 89-94, Apr 2002. ISSN 0141-8130.

PLAZA, G. R. et al. Effect of water on Bombyx mori regenerated silk fibers and its application in modifying their mechanical properties. *Journal of Applied Polymer Science*, v. 109, n. 3, p. 1793-1801, Aug 2008. ISSN 0021-8995.

VEPARI, C.; KAPLAN, D.L. Silk as biomaterial. *Progress in Polymer Science*, v. 32, n. 8-9, p. 991-1007, Aug-Sep 2007. ISSN 0079-6700.