

AVALIAÇÃO DA CINÉTICA DE SECAGEM EM ANÁLISE TERMOGRAVIMÉTRICA DO BAGAÇO DE LARANJA

A. ZANETTI¹, L. C. BENEVIDES², T. P. XAVIER¹ e T. S. LIRA^{1,2}

¹ Universidade Federal do Espírito Santo, Departamento de Engenharias e Tecnologia ² Universidade Federal do Espírito Santo, Programa de Pós-graduação em Energia E-mail para contato: taisa.lira@ufes.br

RESUMO – O Brasil é responsável por metade da produção mundial de suco de laranja sendo que em torno de 50% dessa produção são rejeitadas. Os rejeitos podem ser utilizados como biomassa para o processo de pirólise com a finalidade de obtenção de um conteúdo mais energético. A secagem é primordial para a pirólise porque reduz a umidade presente nos produtos desse processo e permite obtê-los com maior qualidade. Este trabalho tem como objetivo estudar a cinética de secagem do bagaço da laranja por meio da termogravimetria a partir de modelos semi-empíricos em suas formas não isotérmicas. Pôde-se obter a energia de ativação, estimar os parâmetros dos modelos e a partir desses dados observouse que o modelo de Overhults é o que melhor representa a cinética de secagem do bagaço de laranja.

1. INTRODUÇÃO

A citricultura brasileira provê 50% da fabricação mundial de suco de laranja e por isso há uma grande geração de resíduos sólidos, como o bagaço, que corresponde a 50% da massa total da fruta (Farinas et al, 2008). Esse resíduo pode ser aproveitado na forma de biomassa para a conversão de energia limpa. Existem três principais processos termoquímicos de conversão de biomassa: a gaseificação, a combustão e a pirólise (McKendry, 2002). A pirólise é um processo que consiste na degradação térmica da biomassa na ausência total de um agente oxidante ou em quantidades mínimas de modo que a gaseificação não ocorra. A temperatura pirolitíca pode variar de 400 °C a 800 °C e os principais subprodutos formados são líquidos (bio-óleo), sólidos (carvão) e gasosos (Kimura, 2009).

A pirólise ocorre em duas etapas: a secagem e a devolatilização. A primeira corresponde à evaporação da água presente na biomassa por meio de transferência de calor e massa, e já a segunda corresponde à degradação térmica dos demais componentes como a celulose, hemicelulose e lignina (Cai e Liu, 2007). A água está presente de forma significativa na biomassa, principalmente no bagaço de laranja (cerca de 85% em b.u.) (Fiorentin *et al.*, 2012), e por isso a cinética da etapa de secagem deve considerada e avaliada (Chen et al., 2009). Além disso, essa etapa é primordial para a pirólise porque elimina ou reduz a umidade presente nos produtos desse processo influenciando diretamente em sua qualidade.

Dessa forma, este trabalho apresenta como finalidade o estudo da cinética de secagem por meio da análise termogravimétrica (TGA) do bagaço de laranja. Para isso, o

comportamento da secagem foi avaliado pela variação das taxas de aquecimento e pela aplicação do modelo teórico e os modelos semi-empíricos em suas formas não isotérmicas.

2. METODOLOGIA

2.1. Preparação das amostras do bagaço de laranja

A biomassa empregada para o estudo da cinética de secagem em análise termogravimétrica foi o bagaço de laranja pera, (constituído de casca, sementes e polpa). O bagaço foi previamente seco em estufa por 24 horas a $105 \pm 3^{\circ}$ C e moído.

2.2. Secagem por análise termogravimétrica

A partir da amostra preparada realizaram-se experimentos de termogravimetria (TGA) que consiste na técnica na qual a variação de massa de uma amostra é medida em função da temperatura ou do tempo. O equipamento de TGA foi mantido sob fluxo contínuo de atmosfera inerte de nitrogênio à taxa de 50ml/min. Utilizou-se 15 mg de amostra da biomassa para cada análise e os ensaios dinâmicos foram conduzidos com taxas de aquecimento de 5, 10, 20 e 30K/min, da temperatura ambiente até a temperatura aproximada de 900K.

2.3. Modelos semi-empíricos de cinética de secagem

A cinética de secagem por análise termogravimétrica foi determinada utilizando-se os modelos semi-empíricos empíricos de Lewis (1921), Brooker et al. (1974), Overhultz et al. (1973) e o modelo teórico de Fick (BROOKER et al., 1992) considerando-se as partículas esféricas, apresentados na Tabela 1. Os dados experimentais foram ajustados às equações de cinética de secagem por meio de regressões não lineares e os parâmetros foram estimados pela minimização dos quadrados dos resíduos. O modelo que apresentasse o maior coeficiente de determinação, R^2 , foi considerado aquele com melhor ajuste.

Modelo	Equação	
Lewis	$MR = exp\left(-a exp\left(-\frac{b}{T_f}\right) t\right)$	(1)
Brooker	$MR = C \exp\left(-a \exp\left(-\frac{b}{T_f}\right)t\right)$	(2)
Overhultz	$MR = exp\left[-\left(exp\left(a + \frac{b}{T_f}\right)t\right)^c\right]$	(3)
Fick	$MR = \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} exp\left(\frac{-n^2 \pi^2 D_{ef} t}{R^2}\right)$	(4)

Tabela 1 – Equações dos modelos	s de	secagem.
---------------------------------	------	----------

Sendo T_f a temperatura do ar, t o tempo e R o raio da partícula. a, b e c são adimensionais e D_{ef} é a difusividade efetiva, a serem estimados. MR é a razão adimensional de umidade da biomassa expressa na Equação 5 simplificada pela desconsideração do termo que expressa o conteúdo de umidade no equilíbrio. M é o teor de umidade na temperatura T e M_0 a umidade inicial, sempre em base seca (Chen *et al.*, 2013).

$$MR = \frac{M}{M_0}$$

(5)

3. RESULTADOS E DISCUSSÕES

A Figura 1a e 1b representam as curvas referentes à perda de massa (TG) e à taxa da perda de massa (DTG) respectivamente, nos ensaios dinâmicos para a amostra de bagaço de laranja. Estas curvas apresentaram deslocamento gradual para maiores temperaturas com o aumento da taxa de aquecimento. Os resultados de TG e DTG com taxa de aquecimento de 30K/min para o bagaço de laranja são apresentados na Figura 2.

Figura 1 – Curva experimental (a) da perda de massa percentual (TG) e (b) da taxa da perda de massa (DTG) em função da temperatura em diferentes taxas de aquecimento para o bagaço de laranja.

Figura 2 – TG e DTG do ensaio do bagaço de laranja a uma taxa de aquecimento de 30K/min.

A partir da Figura 2 é possível observar a secagem (Fase I) e a devolatização (Fase II). Na primeira, a distribuição de água na biomassa dá-se de duas formas, pela água livre e a água "ligada". A interação da água livre com a biomassa é fraca e sua evaporação ocorre a uma temperatura mais baixa do que a da água ligada, cuja interação com a biomassa é mais forte. Aos 373 K a água livre já foi completamente evaporada e a partir dessa temperatura inicia-se a evaporação da água ligada até aproximadamente 423 K (Chen et al., 2013).

As Figuras 3a e 3b mostram as curvas de secagem do bagaço de laranja em função da temperatura e do tempo, respectivamente, a taxas de aquecimento de 5, 10, 20 e 30 K/min.

Observa-se que houve uma redução da umidade do material com a diminuição da taxa de aquecimento e os aumentos da temperatura e do tempo de secagem.

Figura 3 – Curva de secagem do bagaço de laranja em função da (a) temperatura e do (b) tempo em relação a diferentes taxas de aquecimento.

Os parâmetros cinéticos foram determinados para a fase de perda de água livre, no qual há variação da temperatura ambiente até 100°C para os ensaios dinâmicos a cada taxa de aquecimento estudada. Os resultados encontram-se na Tabela 2. Observou-se que os valores de energia de ativação para os modelos mencionados ficaram na faixa de 2,198 e 19,242 KJ/mol, resultado similar com o reportado na literatura para secagem de resíduos agroindustriais, palha de milho e de trigo, 5-30 KJ/mol (Chen *et al.*, 2013). A Figura 4 apresenta as curvas de secagem experimentais e as estimadas pelos modelos da Tabela 1.

Tabela 2 – Parâmetros de cinética de secagem por meio de termogravimetria do bagaço de laranja.

Modelo	Taxa de Aquecimento (K min ⁻¹)	Parâmetros			Ea	R ²
	-	а	b	С	(KJ mol ⁻¹)	•
Lewis	5	0,0329	529,960	-	4,406	0,9954
	10	0,0571	541,063	-	4,498	0,9907
	20	6,424	2213,286	-	18,401	0,9942
	30	18,171	2314,415	-	19,242	0,9959
Brooker	5	0,012	144,149	1,005	2,198	0,9973
	10	0,006	309,874	1,011	2,576	0,9977
	20	0,871	1447,917	1,005	12,030	0,9979
	30	1,995	1470,264	1,003	12,223	0,9990
Overhultz	5	-8,687	1457,359	1,083	12,116	0,9999
	10	-7,479	1707,459	2,409	14,195	0,9999
	20	-4,809	964,838	3,129	8,021	0,9995
	30	-4,870	1280,578	2,632	10,647	0,9994
		$D_{ef} (m^2 s^{-1})$				\mathbb{R}^2
Fick	5	3,013x10 ⁻¹² 3,383x10 ⁻¹² 2,113x10 ⁻¹²				0,6330
	10					0,2931
	20					0,1647
	30*			-		-

* não houve ajuste.

Figura 4 – Comparação da umidade relativa obtida experimentalmente e pelos diferentes modelos em função do tempo para diferentes taxas de aquecimento: (a) 5 K/min, (b) 10 K/min, (c) 20 K/min e (d) 30 K/min.

Pela análise das curvas de secagem e pelos coeficientes de determinação, o modelo de Overhultz obteve os melhores ajustes para a cinética de secagem, cujo R² foi superior a 0,9994. A média dos valores de energia de ativação para este modelo é 11,245 KJ/mol. Podese observar que o modelo de Fick apresentou o pior ajuste dos dados experimentais com R²<0,6330, sendo que esse valor decresceu com o aumento da taxa de aquecimento e que não foi possível o ajuste na taxa de 30 K/min. A difusividade efetiva média variou de 3,013x10⁻¹² até 2,113x10⁻¹² m².s⁻¹ para as taxas de aquecimento entre 5 e 20 K/min, respectivamente. Possivelmente, a falta de adequação do último modelo deve-se a consideração da difusividade como um parâmetro constante para obtenção da solução analítica da 2ª Lei da Fick, sendo que ela varia com a temperatura que não é constante nos experimentos.

4. CONCLUSÕES

A partir do estudo realizado foi possível avaliar o processo de secagem não isotérmica do bagaço da laranja pela termogravimetria a diferentes taxas de aquecimento. Na medida em que ocorreu o aumento da temperatura e a redução da taxa de aquecimento houve decréscimo da umidade da biomassa. Determinou-se também que a energia de ativação para os modelos semiempíricos de secagem empregados estão na faixa de 2,198 e 19,242 KJ/mol. Além disso, pode-se

concluir que o modelo de Overhults é o que melhor se adequa a cinética de secagem do bagaço de laranja já que possui o maior valor de R^2 .

5. REFERÊNCIAS

- BROOKER, D.B., BAKKER-ARKEMA, F.W., HALL, C.W. *Drying cereal grains*. The Avi Publish Company, Inc., Westport, 1974.
- BROOKER, D. B.; BAKKER-ARKEMA, F. W.; HALL, C. W. Drying and storage of grains and oilseeds. New York: The AVI Van Nostrand Reinhold, 1992. 450 p.
- CAI, J.M., LIU, R.H. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels, v. 21, p. 3695–3697, 2007.
- CHEN, L.; XING, L.; HAN, L. Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology. Renewable and Sustainable Energy Reviews, v. 13, p- 2689-2695, 2009.
- CHEN, D, ZHENG, Y, ZHU, X. In-depth investigation on the pyrolysis kinetics of raw biomass, Part I: Kinetic analysis for the drying and devolatilization stages. Bioresource Technology, v. 131, p. 40–46, China, 2013.
- FARINAS, C. S., LEMO, V., ZÚNIGA, U. F., BERTUCI NETO, V., COURI, S. Avaliação de Diferentes Resíduos Agroindustriais como Substratos para a Produção de Celulases por Fermentação Semi-sólida. Embrapa Instrumentação Agropecuária, São Carlos, SP, 2008.
- FIORENTIN, L. D.; MENON B. T.; ALVES J. A., BARROS, S. T. D. de; PEREIRA, N. C.; MOTTA LIMA, O. C. da; MODENES, A. N. Análise de secagem do bagaço de laranja em camada fina utilizando modelos semi-teóricos e empíricos. *Revista Engevista*, v. 14, n. 1, p. 22-23, 2012.
- KIMURA, L. M. Uma contribuição à pirólise de biomassa: avaliação de alguns resíduos da agroindústria como fonte de energia alternativa. 2009. 105 f. Dissertação (Mestrado)-Curso de Engenharia Química, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, 2009.
- LEWIS, W.K. The rate of drying of solids materials. Ind. Eng. Chem. vol 13, p. 427, 1921.
- McKENDRY, P. Energy production from biomass (part 2): conversion technologies. Revista Elsevier Science. v. 83, p. 47-54, 2002.
- OVERHULTZ, D.G.; WHITE, G.M.; HAMILTON, H.E. et al. *Drying soybeans with heated air*. Transactions of the ASAE, p. 112-113, 1973.