

DIMENSIONAMENTO, SIMULAÇÃO E ANÁLISE DE SENSIBILIDADE DE SISTEMAS DE EVAPORAÇÃO MÚLTIPLO EFEITO DE INDÚSTRIAS DE CELULOSE *KRAFT*

J. M. GASPARONI^{1,1}, L. A. F. OLIVEIRA¹, M. O. AGUIAR², C. R. S. N. ALMEIDA³ e G. M. ALMEIDA²

¹ Universidade Federal de São João del-Rei, Departamento de Engenharia Química e Estatística

² Universidade Federal de Minas Gerais, Departamento de Engenharia Química
³ Universidade Federal de São João del-Rei, Departamento das Engenharias de
Telecomunicações e de Mecatrônica; e Centro Federal de Educação Tecnológica de Minas Gerais, Departamento de Engenharia Elétrica
E-mail para contato: galmeida@deq.ufmg.br

RESUMO – Com regulações cada vez mais restritivas da sociedade, dos governos e de associações, é crescente o papel da Engenharia de Processos para a melhoria dos processos, o atendimento às legislações e a manutenção e ganho de mercado. No presente trabalho, após a modelagem matemática e validação de um sistema de evaporação múltiplo efeito de indústrias de celulose *Kraft*, exploraram-se as suas etapas de dimensionamento de equipamentos, de simulação de novos cenários e de análise de sensibilidade de variáveis de interesse.

1. INTRODUÇÃO

A Engenharia de Processos constitui-se em um procedimento sistematizado para o projeto de processos químicos industriais. As suas etapas: dimensionamento de equipamentos, simulação de cenários operacionais e análise de sensibilidade sobre variáveis de interesse, respondem, de modo satisfatório, a diversas questões sobre os processos (Perlingeiro, 2005). Com a maior complexidade dos processos industriais, e as regulações mais restritivas da sociedade, governos e associações, a demanda por esse conjunto de análises é crescente. Atualmente, um maior entendimento das operações é uma questão essencial para a própria manutenção do negócio. Neste trabalho, exploraram-se cada uma dessas etapas, utilizando-se um sistema de evaporação múltiplo efeito de indústrias de celulose Kraft como estudo de caso (Figura 1). Este sistema é responsável por concentrar o licor negro, subproduto da etapa de polpação dos cavacos de madeira, inicialmente entre 15 e 20% em massa, acima de 60% (neste trabalho, adotou-se 50%). O número usual de efeitos é seis, sendo o primeiro efeito composto por três ou quatro evaporadores (neste trabalho, adotou-se um evaporador por efeito). A alimentação do licor diluído ocorre entre o quarto e o sexto efeitos (neste trabalho, adotou-se o quinto efeito), e a saída do licor concentrado e a entrada do vapor vivo (fonte externa) são no primeiro efeito (SENAI e IPT, 1988; Venkatesh e Nguyen, 1985).

¹ In memoriam.

Figura 1 – Sistema de evaporação de múltiplo efeito. (Fonte: Kumar *et al.* (2013))

2. OBJETIVOS

Aplicar os conceitos de engenharia de processos, com os objetivos de dimensionamento, de simulação e de análise de sensibilidade. Utilizou-se o sistema de evaporação múltiplo efeito de indústrias de celulose *Kraft* como estudo de caso. Empregou-se o *software* MATLAB² para a automatização dos cálculos.

3. METODOLOGIA

Descrevem-se, a seguir, as etapas da metodologia. (Etapas preparatórias) Após o reconhecimento do processo (Figura 1), realiza-se a sua modelagem matemática. Utilizaramse as equações de balanço de massa para o vapor (Equação 1), o licor (Equação 2) e o soluto do licor (Equação 3); as equações de balanço de energia para o vapor (Equação 4) e o licor (Equação 5); e a equação global de transferência de calor (Equação 6), em que \dot{m} = vazão mássica (kg/s), x = concentração, H = entalpia específica (kJ/kg), q = taxa de transferência de calor (kJ/s), U = coeficiente global de transferência de calor (W/(m²·°C)), A = área de troca térmica (m²), T = temperatura (°C), e os subscritos e, s e sat, entrada, saída e saturação, respectivamente, conforme McCabe et al. (2005). Ainda calcularam-se os índices usuais de desempenho: economia de vapor (= $massa_{água \ evaporada}/massa_{vapor \ vivo}$), capacidade de evaporação (= $massa_{água evaporada}/\Delta t$) e consumo de vapor (= capacidade/economia), conforme McCabe et al. (2005). Considerações (conforme Kumar et al. (2013)): (1) Vapor de saída como líquido saturado (a partir das Equações 1 e 4, $q_s = \dot{m} \cdot \lambda$, em que $\dot{m}_e = \dot{m}_s = \dot{m}$ e λ = calor latente); (2) Perda de calor desprezível ($q_s = q_e$); (3) Não há perda de sólidos do licor (Equação 3); (4) Coeficiente global de transferência de calor constante ([1160 (efeito 1), 1220, 1280, 1335, 1365, 1400 (efeito 6)] W/(m². °C)); (5) Configuração do fluxo do licor: 5 (entrada do licor diluído) $\rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ (entrada do vapor vivo e saída do licor concentrado), conforme a Figura 1. A etapa seguinte refere-se a estimativa de propriedades e *coeficientes*. Para as propriedades do licor, a saber, massa específica (kg/m³), calor específico (kJ/(kg·K)), viscosidade dinâmica (Pa·s), entalpia específica (kJ/kg), e elevação do ponto de

² Aquisição de licença pelo Projeto TEC APQ-02544-09 (Edital 01/2009 Universal FAPEMIG).

ebulição (EPE), empregaram-se as correlações experimentais em Holmlund e Parviainen (1999) e Masse *et al.* (1986). As propriedades do licor são função de sua concentração e temperatura. Para o cálculo das propriedades da água, a saber, entalpia da água evaporada (kJ/kg), entalpia do vapor saturado (kJ/kg), e calor latente de vaporização (kJ/kg), utilizaram-se as relações também em Holmlund e Parviainen (1999). (Etapas executivas; seção 4) Passou-se então ao *dimensionamento*, ou seja, ao cálculo das áreas dos evaporadores, e a *simulação*, com a simulação de novos cenários de operação, a partir de perturbações na vazão de vapor vivo. Na sequência, realizou-se um estudo de *análise de sensibilidade* sobre a concentração final do licor.

$$\dot{m}_e = \dot{m}_s \tag{1}$$

$$\dot{m}_e = \dot{m}_s + (\dot{m}_e - \dot{m}_s) \tag{2}$$

$$\dot{m}_e \cdot x_e = \dot{m}_s \cdot x_s \tag{3}$$

$$\dot{m}_e \cdot H_e = \dot{m}_s \cdot H_s + q_s \tag{4}$$

$$\dot{m}_e \cdot H_e + q_e = \dot{m}_s \cdot H_s + (\dot{m}_e - \dot{m}_s) \cdot H_s \tag{5}$$

$$q = U \cdot A \cdot \left(T_{vapor,sat} - T_{licor,s} \right) \tag{6}$$

4. APRESENTAÇÃO E DISCUSSÃO DE RESULTADOS

A etapa de modelagem matemática resultou em 13 equações (1 equação de balanço de massa e 1 equação de balanço de energia para cada um dos 6 efeitos, além da equação global de transferência de calor) e 19 variáveis, conforme procedimento em McCabe *et al.* (2005). Com a especificação de 6 variáveis (Tabela 1), o número de incógnitas é 13, e o número resultante de graus de liberdade, zero. Portanto, tanto para o dimensionamento quanto para a simulação, tem-se um problema determinado sem otimização, cada um deles com um sistema particular de equações não-lineares. Utilizou-se a função *fsolve* do MATLAB para a resolução de ambos.

Dimensionamento	Valor	Simulação	Valor
Fluxo de licor(e) (kg/s) ⁽¹⁾	23,98	Fluxo de licor(e) (kg/s) ⁽¹⁾	23,98
Concentração do licor(e) (kg/kg) ⁽¹⁾	0,1	Concentração do licor(e) (kg/kg) ⁽¹⁾	0,1
Temperatura do licor(e) (°C) ⁽¹⁾	80	Temperatura do licor(e) (°C) ⁽¹⁾	80
Pressão do vapor vivo (Pa) ⁽¹⁾	3,510·10 ⁵	Pressão do vapor vivo (Pa) ⁽¹⁾	3,510·10 ⁵
Concentração do licor(s) (kg/kg) ⁽²⁾	0,5	Fluxo de vapor vivo (kg/s) (perturbação de +5%) ⁽¹⁾	4,4586
Pressão de operação (sexto efeito) (Pa) ⁽²⁾	11727	Área de troca térmica (de cada evaporador) $(m^2)^{(1)}$	554,4000

Tabela 1 – Variáveis especificadas: Dimensionamento (Kumar *et al.*, 2013) e Simulação (Kumar *et al.* (2013) e seção 4.1), em que (e) = entrada e (s) = saída.

⁽¹⁾Condições conhecidas.

⁽²⁾ Metas de projeto e de operação.

4.1. Dimensionamento

A Tabela 2 contém o resultado da etapa de dimensionamento. Validou-se esse resultado, e, portanto, o modelo matemático (seção 3), ao compará-lo com aquele em Kumar *et al.* (2013). (Adotou-se nas Tabelas 1, 2 e 3 o mesmo número de algarismos significativos em Kumar *et al.* (2013); ao longo do presente texto, usam-se valores aproximados.) Observa-se uma área de troca térmica de cada evaporador de 554,4 m², e uma vazão mássica de vapor vivo, dada a especificação de 50% para o licor concentrado, de 4,2 kg/s.

Variável	Ι	II	III	IV	V	VI
Licor						
Concentração(e) (kg/kg)	0,2806 (0,2883)	0,2013 (0,2067)	0,1606 (0,1639)	0,1384 (0,1401)	0,1	0,1151 (0,1157)
Concentração(s) (kg/kg)	0,5	0,2806 (0,2883)	0,2013 (0,2067)	0,1606 (0,1639)	0,1151 (0,1157)	0,1384 (0,1401)
Vazão(e) (kg/s)	8,5457 (8,3173)	11,9117 (11,6031)	14,9256 (14,627)	17,3247 (17,1105)	23,98	20,8200 (20,7300)
Vazão(s) (kg/s)	4,7960 (4,7960)	8,5457 (8,3173)	11,9117 (11,6031)	14,9256 (14,627)	20,8200 (20,7300)	17,3247 (17,1105)
Temperatura(e) (°C)	98,2855 (99,4662)	82,5867 (83,4384)	70,4266 (71,0077)	50,3945 (50,419)	80	61,1306 (61,3928)
Temperatura(s) (°C)	124,7940 (125,2157)	98,2855 (99,4362)	82,5867 (83,4384)	70,4266 (71,0077)	61,1306 (61,3928)	50,3945 (50,419)
EPE (°C)	14,1631 (14,1838)	4,9192 (5,1611)	2,7591 (2,8805)	1,8824 (1,9428)	1,1405 (1,1489)	1,394 (1,419)
Calor específico (kg/kg·K)	3,6404 (3,3006)	3,7804 (3,6275)	3,8572 (3,7704)	3,8962 (3,8507)	3,9913 (3,9506)	3,9516 (3,8924)
Vapor						
Temperatura(e) (°C)	139	110,6310 (111,0319)	93,3663 (94,3051)	79,8276 (80,5579)	68,5442 (69,0649)	59,9900 (60,2439)
Temperatura(s) (°C)	110,6310 (111,0319)	93,3663 (94,3051)	79,8276 (80,5579)	68,5442 (69,0649)	59,9900 (60,2439)	49
Vazão(e) (kg/s)	4,2463 (3,8028)	3,7497 (3,5213)	3,3659 (3,2858)	3,0139 (3,0239)	2,3991 (2,4835)	3,1500 (3,2500)
Vazão(s) (kg/s)	3,7497 (3,5213)	3,3659 (3,2858)	3,0139 (3,0239)	2,3991 (2,4825)	3,1500 (3,2500)	3,5010 (3,6195)
Índice de desempenho						
Área (m ²)	554,4000 (591,9614)	_	_	_	_	_
Consumo de vapor (kg/s)	4,2463 (3,8028)	_	_	_	_	_
Capacidade de evaporação	19,1796					

(19, 184)

4,5167

(5,0447)

(kg/s)

Economia de vapor (kg/kg)

Tabela 2 – Resultado e validação do dimensionamento (em negrito: variáveis especificadas (Tabela 1); entre parêntesis: resultado de Kumar *et al.* (2013); (e) = entrada e (s) = saída)

4.2. Simulação

Empregou-se o modelo validado para a simulação de cenários operacionais, a partir de perturbações na vazão de vapor vivo de $\pm 5\%$. A Tabela 1 mostra as variáveis especificadas, e a Tabela 3, o resultado para o cenário de +5%. Observa-se que a concentração final do licor aumenta de 50% (caso-base) para 62,9% (cenário 1: +5%) e diminui para 36,2% (cenário 2: -5%; não mostrado por limitação de espaço), dada a área de troca térmica de 554,4 m². Já a capacidade de evaporação da planta aumenta para 21,1 kg/s (cenário 1) e diminui para 17,4 kg/s (cenário 2) em relação ao caso-base de 19,2 kg/s. Ainda, a Figura 2(a) mostra o aumento da massa específica do licor em ambos os cenários.

Tabela 3 – Resultado da simulação, após perturbação de +5% na vazão de vapor vivo (em negrito: variáveis especificadas (Tabela 1); (e) = entrada e (s) = saída)

Variável	Ι	II	III	IV	V	VI
Licor						
Concentração(e) (kg/kg)	0,3541	0,2330	0,1781	0,1498	0,1	0,1187
Concentração(s) (kg/kg)	0,6289	0,3541	0,2330	0,1781	0,1187	0,1498
Vazão(e) (kg/s)	6,7707	10,2882	13,4623	16,0022	23,98	20,1853
Vazão(s) (kg/s)	2,8680	6,7707	10,2882	13,4623	20,1853	16,0022
Temperatura(e) (°C)	90,1983	71,8326	58,5037	35,6423	80	48,4722
Temperatura(s) (°C)	124,0833	90,1983	71,8326	58,5037	48,4722	35,6423
EPE (°C)	20,9217	6,9675	3,3000	2,0746	1,1219	1,4506
Calor específico (kg/kg·K)	3,5097	3,7125	3,8150	3,8647	3,9913	3,9389
Vapor						
Temperatura(e) (°C)	139	103,1615	83,2308	68,5326	56,4290	47,3502
Temperatura(s) (°C)	103,1615	83,2308	68,5326	56,4290	47,3502	34,1916
Vazão(e) (kg/s)	4,4586	3,9026	3,5174	3,1740	2,5399	3,7946
Vazão(s) (kg/s)	3,9026	3,5174	3,1740	2,5399	3,7946	4,1830
Índice de desempenho						
Área (m ²)	554,4000	_	_	_	_	_
Consumo de vapor (kg/s)	4,4586	-	_	_	-	_
Capacidade de evap. (kg/s)	21,1115	_	_	_	_	_
Economia de vapor (kg/kg)	4,7349	_	_	_	_	_

4.3. Análise de Sensibilidade

O objetivo de um estudo de sensibilidade é avaliar o efeito da incerteza, comum às etapas de modelagem matemática e de estimativa de propriedades e coeficientes, sobre o projeto (dimensionamento) ou a operação (comportamento) real. A Figura 2(b) mostra a Função Sensibilidade da concentração final do licor (C) em relação a vazão de vapor vivo (F), conforme procedimento em Perlingeiro (2005). Mostra-se também o valor da concentração final do licor. Observa-se uma sensibilidade significativa, ora positiva ora negativa (pico), da concentração, principalmente para variações de vapor entre 0 e 5%. Tal análise é útil para verificar a margem de operação do processo sem perdas significativas de seu desempenho.

Figura 2 – Resultados: (a) simulação, com perturbações de ±5% na vazão de vapor vivo, e (b) análise de sensibilidade da concentração final do licor em relação a vazão de vapor vivo.

5. CONSIDERAÇÕES FINAIS

Exploraram-se as etapas de dimensionamento de equipamentos, de simulação de novos cenários, e de análise de sensibilidade de variáveis-chave, após a modelagem matemática e validação de um sistema de evaporação múltiplo efeito de indústrias de celulose *Kraft*. Ressalta-se o caráter interdisciplinar da área de Engenharia de Processos e sua crescente relevância para a própria manutenção e então expansão do negócio das indústrias químicas.

6. REFERÊNCIAS

HOLMLUND, K.; PARVIAINEN, K. *Evaporation of black liquor*, In: GULLICHSEN, J.; FOGELHOLM, C.J. (eds.) *Chemical pulping (book 6B)*, Cap. 12, Helsinque: Fapet Oy, 1999.

KUMAR, D.; KUMAR V.; SINGH, V. P. Modeling and dynamic simulation of mixed feed multi-effect evaporators in paper industry. *Applied Mathematical Modelling*, v. 37, p. 384-397, 2013.

MASSE, M. A.; KIRAN, E.; FRICKE, A. L. Freezing and glass transition phenomena in polymer-diluent mixtures, *Polymer*, v. 27, p. 619-622, 1986.

MCCABE, W. L.; SMITH, J. C.; HARRIOT, P. Unit operations of chemical engineering, 7th ed., Singapura: McGrawHill, 2005.

PERLINGEIRO, C. A. G. Engenharia de processos: Análise, simulação, otimização e síntese de processos químicos, 1a ed., São Paulo: Edgard Blücher, 2005.

SENAI (Serviço Nacional de Aprendizagem Industrial); IPT (Instituto de Pesquisas Tecnológicas do Estado de São Paulo S.A.). *Celulose e papel: Tecnologia de fabricação da pasta celulósica*, vol. 1, 2a ed., São Paulo: IPT, 1988.

VENKATESH, V.; NGUYEN, X. N. *Evaporation and concentration of black liquor*, In: HOUGH, G. *Chemical recovery in the alkaline pulping process*, Cap. 3, Atlanta: Tappi, 1985.