

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

INTERAÇÃO DE IMUNOGLOBULINA G HUMANA EM ADSORVENTES DE QUITOSANA/ALGINATO: AVALIAÇÃO DE ISOTERMAS DE ADSORÇÃO E PARÂMETROS TERMODINÂNICOS

N. M. Millan¹, A. C. M. Pássaro¹, T. M. Mozetic¹, I. J. Silva Jr² e I. T. L. Bresolin¹

¹ Universidade Federal de São Paulo, Departamento de Engenharia Química
² Universidade Federal do Ceará, Centro de Tecnologia, Departamento de Engenharia Ouímica

RESUMO – Imunoglobulinas humanas, com destaque à IgG, são anticorpos com ampla aplicação terapêutica no tratamento de doenças do sistema imunológico, o que justifica a sua necessidade de alta pureza, normalmente atingida com métodos cromatográficos. Este trabalho estudou a capacidade de microesferas de quitosana/alginato sem ligantes imobilizados de adsorver IgG humana, em diferentes temperaturas de 4°C, 15°C, 25°C e 37°C com tampões HEPES (pH 6,8) e MES (pH 6,5). Observou-se que a matriz possui afinidade média e que o tampão HEPES proporcionou as maiores capacidades de adsorção, em especial em 4°C, e que ocorre cooperatividade positiva no sistema, que se ajusta melhor ao modelo de Langmuir-Freundlich. Os parâmetros termodinâmicos foram determinados e revelaram um processo de adsorção espontâneo e a possibilidade de interações hidrofóbicas e adsorção em multicamada.

1. INTRODUÇÃO

Imunoglobulinas humanas são glicoproteínas que atuam no reconhecimento de antígenos. Dentre estas, destaca-se a imunoglobulina da classe G (IgG) por sua ampla aplicação em fins terapêuticos e também diagnósticos, como no tratamento das imunodeficiências primárias. Essas somam mais de 150 doenças e, em sua maioria, resultam em maior suscetibilidade a infecções, doenças autoimunes e neoplasias. A imunoglobulina humana como terapia de reposição de anticorpos tem sido recomendada nesses casos, a fim de reduzir o risco de infecções e suas sequelas (Carvalho *et al.*, 2010).

Essas aplicações requerem IgG com alto grau de pureza, dado que a presença de outros tipos de proteínas pode comprometer a eficácia do processo (Prasanna e Vijayalakshmi, 2010). Atualmente, os processos tradicionais de purificação de imunoglobulinas (como precipitação por adição de sais ou variações de temperatura e pH) vêm sendo substituídos por métodos mais seletivos baseados em cromatografia de adsorção (Lowe *et al.*, 2001). A cromatografia de afinidade tem sido cada vez mais abordada, fazendo-se uso dos mais variados ligantes (proteínas A e G, corantes, aminoácidos, agentes tiofilicos e íons metálicos)

No entanto, dependendo dos grupamentos disponíveis na superfície do próprio suporte cromatográfico, pode-se também pensar em sua utilização sem nenhum ligante imobilizado. Neste sentido, o presente trabalho buscou avaliar a capacidade de adsorção de IgG humana

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

em microesferas de quitosana/alginato epoxiladas por meio da obtenção de isotermas de adsorção (Langmuir e Langmuir-Freundlich). Também foram levantados os parâmetros termodinâmicos da adsorção: energia livre de Gibbs (ΔG^0), a entalpia (ΔH^0) e a entropia (ΔS^0).

2. MATERIAIS E MÉTODOS

2.1. Materiais

<u>2.1.1. Reagentes</u>: HEPES (ácido N-2-hidroxietilpiperazino-N'-2-etanosulfônico) e MES (ácido morfolinoetanosulfônico) foram adquiridos da Sigma (EUA). A IgG humana utilizada foi o produto comercial Beriglobina® 160 mg/mL (CSL Behring, Alemanha). O preparo dos tampões foi feito com água destilada. As microesferas de quitosana/alginato epoxiladas foram sintetizadas e fornecidas pelo Grupo de Pesquisa em Separações por Adsorção (GPSA) do Departamento de Engenharia Química da Universidade Federal do Ceará.

2.2. Métodos

- 2.2.1. Ensaios em batelada: Os experimentos de obtenção de isotermas de adsorção foram realizados em duplicata. Adicionou-se, a tubos eppendorf de 1,5 mL, 5 mg do adsorvente e 1 mL de solução de proteína em tampão (concentração variando de 0,5 a 10,0 mg/mL). Estes tubos foram submetidos a uma agitação de 3 horas em um agitador orbital com incubadora a 120 rpm (Infors HT, UK) e, em seguida, o sobrenadante foi quantificado pelo método de Bradford (1976) a 595 nm em um espectrofotômetro UV-Vis (Evolution 60S, Thermo Scientific, EUA). Foram realizados experimentos em quatro temperaturas (4°C, 15°C, 25°C e 37°C) em meio a dois tampões diferentes: HEPES (pH 6,8) e MES (pH 6,5).
- <u>2.2.2.</u> Determinação das isotermas de adsorção: Cada ponto da isoterma foi obtido com a média das duplicatas e a capacidade de adsorção foi obtida com um balanço de massa (Equação 1). Os gráficos de q* em função de C* foram construídos e os parâmetros dos modelos de Langmuir (Equação 2) e Langmuir-Freundlich (Equação 3)s foram ajustados, por regressão não linear usando o software OriginPro8[®] (OriginLab Corporation, EUA)..

$$q^* = \frac{V_{sol}(C_0 - C^*)}{m_{ads}}$$
 (1)

$$q^* = \frac{q_m C^*}{K_d + C^*}$$
 (2)

$$q^* = \frac{q_m(C^*)^n}{K_{d(I,F)} + (C^*)^n}$$
 (3)

Em que q^* é a quantidade de proteína adsorvida por grama de adsorvente (mg/g), C^* é a concentração de proteína na fase líquida (mg/mL) em equilíbrio com q^* , C_0 é a concentração inicial de proteína na fase líquida (mg/mL), mads é a massa de adsorvente (g) e Vsol é o volume da solução (mL) em contato com o adsorvente. A variável q_m é a capacidade máxima de proteínas adsorvidas (em mg/g), K_D e $K_{D(LF)}$ são as constantes de dissociação e de dissociação aparente (mol/L), respectivamente, e n é a constante de Langmuir-Freundlich.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

$$\Delta G = \Delta G^0 - RT ln K_d$$
 (4)

$$lnK_{d} = \frac{\Delta H^{0}}{RT} + J \tag{5}$$

$$\Delta G^0 = \Delta H^0 - T\Delta S^0 \tag{6}$$

Em que R é a constante universal dos gases e J é a constante de integração.

3. RESULTADOS E DISCUSSÃO

3.1. Isotermas de Adsorção

Os parâmetros obtidos pelo ajuste não linear dos dados de adsorção de IgG no adsorvente utilizando-se o tampão HEPES (25 mmol/L e pH 6,8) estão na Tabela 1.

Tabela 1 - Parâmetros obtidos a partir do ajuste não linear dos modelos de Langmuir e Langmuir-Freundlich aos dados de adsorção (HEPES 25 mmol/L, pH 6,8).

Temperatura	Langmuir			Langmuir-Freundlich			
(°C)	Q _m (mg/g seca)	K _d (mol/L)	R^2	Q _m (mg/g seca)	$K_{d(LF)}$ (mol/L)	n	R^2
4	919,66 ± 418,58	$(2,93 \pm 2,13)$ x 10^{-5}	0,920	455,21 ± 76,50	$(1,54 \pm 0,59)$ x 10^{-5}	$2,37 \pm 0,89$	0,953
15	285,40 ± 26,02	$(6.61 \pm 1.91) \times 10^{-6}$	0,962	226,01 ± 6,95	$(2,62 \pm 0,61) \times 10^{-7}$	$2,16 \pm 0,30$	0,993
25	340,13 ± 24,63	$(9,05 \pm 2,17)$ x 10^{-6}	0,962	285,78 ± 14,01	$(6,45 \pm 1,28)$ x 10^{-6}	$1,67 \pm 0,27$	0,984
37	387,64 ± 54,03	(2.10 ± 0.68) x 10^{-6}	0,955	284,15 ± 22,23	(1.76 ± 0.41) x10 ⁻⁵	$1,86 \pm 0,41$	0,979

Pelos coeficientes de correlação na Tabela 1, próximos de 1,0, percebe-se que os dois modelos se ajustaram bem. No entanto, o modelo de Langmuir-Freundlich teve um ajuste melhor, pois se aproxima mais de um sistema não ideal ao considerar a existência de sítios não uniformes e de heterogeneidade das interações entre proteína e adsorvente. (Bresolin *et al.*, 2010) Percebe-se também que Langmuir-Freundlich apresentou n > 1 no ajuste, indicando cooperatividade positiva: a adsorção de uma molécula de IgG favorece a adsorção de outra, possivelmente devido à característica heterogênea da adsorção. (Bresolin *et al.*, 2010)

Em seu trabalho, Gondim *et al.* (2014) abordou ensaios em leito fixo de adsorção de IgG humana nas mesmas microesferas de quitosana/alginato utilizadas neste trabalho, porém

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

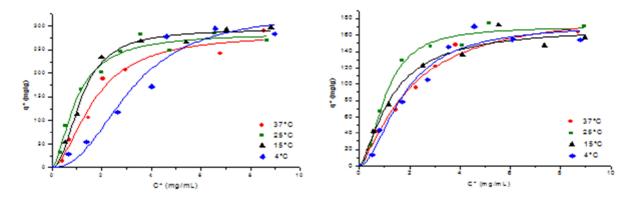
com o corante Cibacron Blue F3GA imobilizado. Neste caso, obteve-se que, a uma temperatura de 25°C e tampão HEPES de mesma força iônica (25 mmol/L) e mesmo pH (6,8), o modelo de Langmuir fornecia um valor de Q_m de 93,3 mg/g seca e o de Langmuir-Freundlich, 85,4 mg/g seca. Estes valores, quando comparados com aqueles que estão na Tabela 1 para 25°C, se mostram inferiores nos dois modelos. Isto sugere que a matriz sem ligantes imobilizados possui, quando usada em ensaios de batelada, uma capacidade de adsorção maior que a matriz com Cibracron Blue F3G4 imobilizado em ensaios de leito fixo.

Também se infere da Tabela 1 que ambos os modelos forneceram o maior valor de Q_m a 4°C. Com relação a K_d , o modelo de Langmuir mostrou uma maior afinidade entre a IgG e a matriz na em 37°C, enquanto que para Langmuir-Freundlich isso ocorreu a 15°C. Todos os dados de K_d obtidos se mostraram condizentes com os valores típicos de sistemas de pseudobioafinidade (faixa de 10^{-2} a 10^{-7} mol/L), indicando um nível médio de afinidade (Bresolin *et al.*, 2010).

Por sua vez, os parâmetros obtidos pelo ajuste não linear dos dados de adsorção em meio tampão MES (25 mmol/L e pH 6,5) estão na Tabela 2.

Tabela 2 - Parâmetros obtidos a partir do ajuste não linear dos modelos de Langmuir e Langmuir-Freundlich aos dados de adsorção (MES 25 mmol/L, pH 6.5)

Langinum-Teunumen aos dados de adsorção (MES 23 minor/E, pri 0,3).							
Temperatura	Langmuir			Langmuir-Freundlich			
(°C)	Q _m (mg/g seca)	K _d (mol/L)	R^2	Q _m (mg/g seca)	$K_{d(LF)}$ (mol/L)	n	R^2
4	430,73 ± 69,72	$(1,48 \pm 0,58) \times 10^{-5}$	0,936	319,90 ± 31,77	$(1,11 \pm 0,32)$ x10 ⁻⁵	$1,86 \pm 0,47$	0,967
15	154,87 ± 12,13	$(6,84 \pm 1,80) \times 10^{-6}$	0,969	134,04 ± 12,63	$(4,62 \pm 1,77)$ x 10^{-6}	$1,46 \pm 0,41$	0,976
25	215,68 ± 20,60	$(8,59 \pm 2,50) \times 10^{-6}$	0,960	170,59 ± 7,20	$(4,62 \pm 1,02)$ x 10^{-6}	$2,01 \pm 0,33$	0,989
37	362,14 ± 34,65	$(1,94 \pm 0,42) \times 10^{-5}$	0,979	302,20 ± 30,52	$(1,72 \pm 0,30)$ x 10^{-5}	$1,35 \pm 0,23$	0,987


Assim como com o tampão HEPES, ambos os modelos tiveram coeficientes de correlação próximos de 1,0, com Langmuir-Freundlich apresentando o melhor ajuste. O maior valor de Q_m , nos dois modelos, se deu em 4°C. Quanto à constante K_d , observou-se uma maior afinidade entre IgG e suporte em 15°C no modelo de Langmuir e em 15°C e 25°C (as constantes foram iguais) em Langmuir-Freundlich. Foi observado cooperatividade positiva novamente e que os valores de K_d também se situam na faixa característica de sistemas de pseudobioafinidade, igualmente com afinidade média.

No trabalho de Gondim *et al.* (2014), não foi feito o ajuste para os dados de adsorção em meio a tampão MES. Porém, ao se investigar apenas a influência do pH em quatro tampões diferentes que incluíam MES (pH = 6,7) e HEPES (pH = 6,8) em ensaios batelada, verificou-se também que a adsorção em tampão HEPES possuía resultados maiores que a adsorção em tampão MES.

Na Figura 1, observam-se as isotermas obtidas, para os dois tampões, com o modelo de melhor ajuste, que foi Langmuir-Freundlich.

Figura 1 - Isotermas de adsorção de IgG em matriz quitosana/alginato com tampão HEPES 25 mmol/L e pH 6,8: ajuste não linear dos parâmetros segundo o modelo de Langmuir (esquerda) e Langmuir-Freundlich (direita).

Pela Figura 1, observa-se que há concordância com o R² da Tabela 1 e da Tabela 2.

3.2. Determinação dos Parâmetros Termodinâmicos

Os valores de ΔG° e ΔS° , calculados pela Equação 4 e pela Equação 6. respectivamente, e o valor de ΔH°, encontrado pelo coeficiente angular da Equação 5, estão na Tabela 3.

Tabela 3 - Parâmetros termodinâmicos para a adsorção de IgG em matriz de quitosana/alginato com tampão HEPES (25 mmol/L e pH 6,8) e MES (25 mmol/L e pH 6,5).

Tampão	Temperatura (°C)	ΔG° (kJ/mol)	ΔH° (J/mol)	ΔS° (J/mol)
	4	-252,74		+912,87
MES	15	-281,02	. 0 < 1 . 1 . 1	+976,15
WIES	25	-285,19	+261,11	+957,42
	37	-275,99		+890,71
	4	-237,18		+857,71
HEPES	15	-281,80	. 52.5.22	+979,82
TILI LS	25	-283,92	+535,33	+954,08
	37	-273,94		+884,97

Pela Tabela 3, nota-se que todos os casos para ΔG^0 foram negativos, indicando reação espontânea e, consequentemente, processo favorável de adsorção. Os valores positivos de ΔS^0 indicam aumento na desordem total do sistema e o ΔH^0 positivo, por sua vez, sugere a contribuição de interações hidrofóbicas.

A existência de interações de natureza hidrofóbica sugere, a princípio, que deve ocorrer um aumento da capacidade de adsorção e da afinidade com o aumento da temperatura, contudo isso não foi observado. Voltando-se à Tabela 1 e à Tabela 2, nota-se que, nos dois tampões, o aumento de temperatura gerou o resultado esperado ao se passar de 15°C a 37°C, mas que o maior valor ocorreu em 4°C. Uma possível explicação está na natureza heterogênea

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

da adsorção. Havendo essa heterogeneidade, um número maior de moléculas de IgG adsorvidas à matriz pode favorecer o aparecimento de uma segunda camada de adsorção que seria governada por interações hidrofóbicas (proteína-proteína).

4. CONCLUSÕES

Foi verificado que a matriz de quitosana/alginato sem corantes imobilizados apresentou resultados significativos de adsorção de IgG humana, tendo afinidade média e, em geral, maiores valores de Q_m com o tampão HEPES, que teve o maior valor a 4°C. O modelo de Langmuir-Freundlich apresentou o melhor ajuste para as isotermas dos dois tampões, indicando que há cooperatividade positiva no sistema. Os resultados para o tampão HEPES também se mostraram melhores que aqueles obtidos em matriz com Cibacron Blue F3G4 imobilizado em ensaios de leito fixo. Por fim, verificou-se que o processo de adsorção, no caso, é termodinamicamente favorável e que há a contribuição de interações hidrofóbicas, que podem governar uma segunda camada de adsorção por meio de interações proteína-proteína.

5. AGRADECIMENTOS

Os autores agradecem à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelo apoio financeiro recebido para a realização do presente trabalho (processos 2014/23893-3 e 2016/18005-7).

6. REFERÊNCIAS

- BRADFORD, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.*, v. 72, p. 248-254, 1976.
- BRESOLIN, I. T. L.; RIBEIRO; M. B.; TAMASHIRO; W. M. S. C.; AUGUSTO; E. F. P.; VIJAYALAKSHMI, M. A.; BUENO, S. M. A. Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG1 monoclonal antibodies purification: the effect of chelating ligand and support. *Appl. Biochem. Biotechnol.* V. 160, p. 2148-2165, 2010.
- CARVALHO, B. T. C; CONDINO-NETO, A.; SOLE, D.; FILHO, N. R; I Consenso brasileiro sobre o uso de imunoglobulina humana em pacientes com imunodeficiências primárias. *Ver. Bras. Alerg. Immunopatol.* V. 33, n° 3, p. 104-116, 2010.
- GONDIM, D.R.; DIAS, N.A.; BRESOLIN, I.T.L.; BAPTISTIOLLI, A.M.; AZEVEDO, D.C.S.; SILVA Jr, I.J. Human IgG Adsorption using Dye-Ligand Epoxy Chitosan/Alginate as Adsorbent: Influence of Buffer System. *Adsorption*, v. 20, p. 925-934, 2014.
- LOWE, C.R., LOWE, A.R., GUPTA, G. New developments in affinity chromatography with potential application in the production of biopharmaceuticals. *Journal of Biochemical and Biophysical Methods*, v. 49, p. 561-574, 2001.
- PRASANNA, R.R., VIJAYALAKSHMI, M.A. Characterization of chelate methacrylate nonolithic disk for purification of polyclonal and noclonal immunoglobulin G. *Journal of Chromatography A*, v. 1217, p. 3660-3667, 2010.