UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

ANÁLISE DOS PRODUTOS GASOSOS DA HIDROPIRÓLISE DE CARVÃO MINERAL POR CROMATOGRAFIA GASOSA

R. B. RIBEIRO¹, R. S. NASCIMENTO¹, V. V. F. JÚNIOR¹, F. P. GUTERRES¹ e A. R. C. MUNIZ¹

¹ Universidade Federal do Pampa, Departamento de Engenharia Química E-mail para contato: romulob.ribeiro@yahoo.com.br

RESUMO - O carvão é o mais abundante recurso energético não renovável e a mais importante reserva energética do planeta. As reservas mais significativas de carvão no Brasil são as da Bacia do Paraná, localizadas na região sul do país, onde 38% do carvão nacional está localizado na cidade de Candiota/RS. A principal utilização do carvão mineral é para geração de energia elétrica, porém, devido ao baixo poder calorífico do carvão dessa região, estudos são necessários para melhor aproveitamento dessa matéria prima, sendo uma das principais técnicas a hidropirólise. Essa técnica consiste na decomposição térmica mediante aquecimento do carvão juntamente com um solvente, em um recipiente fechado, sob pressão e alta temperatura. Nessas condições ocorrem reações de craqueamento das macromoléculas do carvão e formação de hidrocarbonetos de menor peso molecular. Portanto este trabalho tem por objetivo a realização de ensaios de hidropirólise do carvão da jazida de Candiota-RS e identificação de compostos da fase gasosa através de GC-TCD. Para isso, foram realizados experimentos utilizando um reator de alta pressão e temperatura, operando em modo batelada, utilizando-se água como solvente. Nos gases gerados foi identificada uma produção significativa de hidrogênio e metano além de presença de gases não condensáveis como dióxido de carbono e etano.

1. INTRODUÇÃO

1.1. Carvão mineral

O carvão mineral é uma rocha sedimentar carbonácea proveniente da decomposição de matéria vegetal depositada em regiões pantanosas do período carbonífero, entre 345 a 280 milhões de anos atrás (Riegel e Kent, 2007; Perry *et al*, 2008; Speight, 2008). Estima-se que o Brasil possua reservas totalizando 6,6 bilhões de toneladas, contudo, esta quantia equivale somente a 0,7% da reserva mundial (BP, 2016). Das reservas brasileiras de carvão, 89% encontram-se no Rio Grande do Sul, sendo que 39% localizam-se no município de Candiota/RS (Süffert, 1997). Dessa maneira observa-se um grande potencial a ser explorado na região.

O minério da jazida de Candiota é atualmente explorado com o único objetivo de geração de energia termoelétrica. No estudo realizado por Stüffert (1997) também qualificouse os carvões desta jazida como pertencendo a categoria de carvão betuminoso de alto volátil C, não coqueificável, com teor de cinzas médio próximo de 52%, teor de enxofre inferior a

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

2% e poder calorífico superior, em base seca, próximo de 3.300 cal/g, com pequenas alterações de valores observadas em todos os blocos analisados.

Segundo Clifford e Song (2011) recomenda-se a utilização de carvões subbetuminosos e betuminosos para a hidropirólise pois são mais estáveis à temperatura e aos solventes, também por apresentarem maiores teores de impurezas esses proporcionam uma baixa eficiência na queima para geração de energia, devido ao baixo poder calorífico.

1.2. Processos de conversão térmica do carvão

A hidropirólise consiste na degradação térmica de matéria orgânica na ausência parcial ou total de oxigênio com adição de solvente a fim de gerar produtos sólidos, líquidos e gasosos com propriedades diferentes da matéria-prima. Este processo compreende uma série de reações químicas e físicas que ocorrem em pressões de até 2.500 psi e temperaturas entre 250 e 550°C (Liang *et al*, 2014). O objetivo principal da hidropirólise é gerar produtos com uma razão de hidrogênio-carbono maior do que a encontrada no carvão, e tem por objetivo secundário a remoção de impurezas como enxofre, nitrogênio e oxigênio (Riegel e Kent, 2007).

Segundo Riegel e Kent (2007) e Li *et al* (2008), observa-se que ocorre um aumento na produção de gases combustíveis em condições de pressão e temperatura altas, com a presença de hidrogênio na atmosfera de reação e com partículas menores de carvão. Conforme Yan *et al* (2014), em temperaturas e pressões de hidrogênio maiores, a formação de moléculas orgânicas menores é favorecida, pois o aumento da temperatura auxilia na decomposição das macromoléculas do carvão e a presença de hidrogênio promove a estabilização dos fragmentos formados.

1.3 Cromatografia gasosa

A técnica de cromatografia é baseada na separação dos componentes da amostra que se deseja analisar. Inicialmente injeta-se a amostra no equipamento, esta então é misturada a fase móvel, no caso da cromatografia líquida o analíto é misturado a um solvente, e na cromatografia gasosa a um gás inerte, geralmente hélio ou nitrogênio. Em seguida, a fase móvel percola por uma coluna cromatográfica (fase estacionária), e devido a diferenças de interação dos componentes presentes na fase móvel com a fase estacionária, ocorre a separação dos mesmos ao longo da coluna. Ao fim da mesma, o analíto é avaliado conforme o tempo de residência na coluna. Em conjunção com o processo de separação utiliza-se sistemas de detecção de forma a determinar a composição da amostra, um sistema relativamente simples e de ampla aplicação é o detector por condutividade térmica (TCD), no qual analisa-se a alteração causada pelos compostos na condutividade térmica do gás de arraste, dessa maneira e em conjunto com o tempo de retenção na coluna, é possível identificar os compostos presentes na amostra (Skoog *et al*, 1980; Scott, 1996).

Este trabalho tem por objetivo realizar a hidropirólise do carvão mineral de Candiota e verificar a composição dos produtos gasosos da mesma através de análise por GC-TCD.

2. MATERIAL E MÉTODOS

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

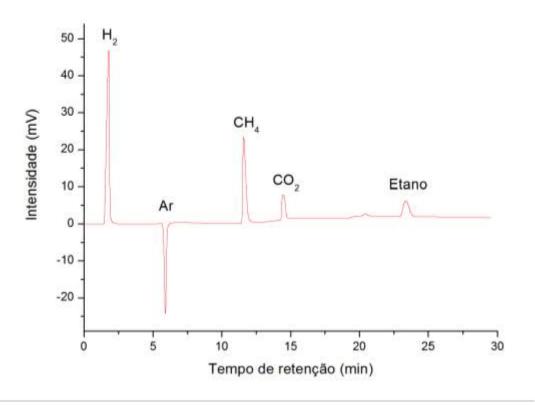
Os testes de hidropirólise foram realizados em reator de alta pressão da marca Parr série 4575/4576 HP/HT Pressure Reactors do Laboratório de Energia e Carboquímica. Este reator possui um vaso cilíndrico, com capacidade de 250 ml, e pode operar em condições máximas de temperatura e pressão de 500°C e 5000 psi, respectivamente. A temperatura do forno, o sistema de resfriamento do reator e agitação são controlados por controlador da marca Parr modelo 4848 Reactor Controller, ambos equipamentos são mostrados na Figura 1.

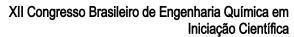
Os ensaios foram realizados em batelada nas condições que potencializassem a geração de gases combustíveis não-condensáveis. Portanto carregou-se o vaso reacional com 40g de carvão pulverizado com diâmetro médio de 230 µm proveniente da jazida de Candiota e 80g de água deionizada, a pressão inicial do sistema foi regulada adicionando gás argônio até 1000 psi, ajustou-se a temperatura no forno para 495°C, obtendo-se uma temperatura no interior do reator de 460°C. Ao atingir a temperatura de reação iniciou-se a retirada e consequente análise das amostras dos gases pelo GC-TCD.

Figura 1 – Reator de alta pressão e temperatura e controlador

Analisou-se os gases gerados nos ensaios de hidropirólise quanto a sua composição através da cromatografia gasosa, em cromatógrafo gasoso GC-2014 da marca Shimadzu, com coluna de 15 pés, recheio Carboxen-1000 de 60/80 mesh, diâmetro de 1/8" SS e detector de condutividade térmica (GC-TCD), exposto na Figura 2. Usou-se uma temperatura de injeção de 225°C utilizando N_2 como gás de arraste com vazão de 30ml/min, o perfil de temperatura da coluna foi ajustado conforme o fabricante, aquecendo inicialmente a 35°C por um período de 5 min, em seguida a uma taxa de 20°C/min elevou-se a temperatura da coluna até 225°C mantendo-a por mais 15 min, completando o tempo de análise de 29,5 min.

Figura 2 – Cromatógrafo gasoso




3. RESULTADOS E DISCUSSÃO

Identificou-se a produção de hidrogênio, metano, dióxido de carbono e etano no ensaio de hidropirólise ao final de 4 horas de reação, como demonstra a Figura 3. Os picos de hidrogênio e metano apresentam maior intensidade, seguidos de dióxido de carbono e etano. O pico de argônio apresenta intensidade negativa pois possui condutividade térmica menor que o gás de arraste, nitrogênio.

Figura 3 – Cromatograma dos gases da hidropirólise de carvão mineral

Segundo Michels e Landais (1994), a adição de água, como solvente, no processo de pirólise proporciona pressão ao meio reacional devido a vaporização de parte da água em sistema fechado, e ao mesmo tempo promove um meio quimicamente ativo, pois fornece hidrogênio à reação. Silverman *et al* (1986) também explica que no processo de hidropirólise a adição de vapor d'água aumenta a produção de hidrogênio e metano por meio do craqueamento do material carbonáceo pobre em hidrogênio, outro fator levantado pelos autores é a diminuição da quantidade de monóxido de carbono na fase gasosa, devido a reações de *water-gas shift*, na qual vapor d'água e monóxido de carbono reagem formando hidrogênio e dióxido de carbono. Ademais, notou-se a produção de etano no gás de hidropirólise sendo um material com potencialidade de utilizações.

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

4. CONSIDERAÇÕES FINAIS

A partir dos resultados obtidos observa-se que o processo de hidropirólise, pode ser uma alternativa de utilização para o carvão de Candiota, visto a possibilidade de produção de gases de alto valor econômico e industrial, como hidrogênio, metano e etano. A cromatografia gasosa se mostra eficiente para o presente caso, apresentando uma boa separação e definição gráfica dos compostos. Ademais, verifica-se a necessidade de estudos futuros, mais aprofundados sobre a viabilidade econômica do processo e possíveis utilizações desses insumos.

5. REFERÊNCIAS

- SILVERMAN, J.; FRIEDMAN, J.; ULLMAN, A. Z. Hydropyrolysis process, 1986. Google Patents. Disponível em: https://www.google.ch/patents/CA1199039A?cl=en. Acesso em: fev. 2017.
- RIEGEL, E. R.; KENT, J. A. Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology. 2007.
- PERRY, R. H.; BENSKOW, L. R.; BEIMESCH, W. E. Perry's Chemical Engineers' Handbook. Nova Iorque: McGraw-Hill, 2008.
- SPEIGHT, J.G. Handbook of Coal Analysis. John Wiley & Sons. New Jersey: Series Editor, 2005.
- SPEIGHT, J.G. Synthetic fuel Handbook Properties, Process and Performance. McGraw-Hill Handbooks, 2008.
- BP. Statistical Review of World Energy, June 2016. *BRITISH PETROLEUM* Disponível em: http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html>. Acesso em: nov. 2016.
- SÜFFERT, T. Carvão nos Estados do Rio Grande do Sul e Santa Catarina. Companhia de Pesquisa de Recursos Minerais. projeto nº 21, 1997.
- SKOOG, D. A.; WEST, D. M.; HOLLER, F. J.; CROUCH, S. R. Principles of Instrumental Analysis. Editora Thomson, 1998.
- LI, X.; HU, H.; JIN, L.; HU, S.; WU, B. Approach for promoting liquid yield in direct liquefaction of Shenhua coal. Fuel Processing Technology, v. 89, n. 11, p. 1090–1095, 2008.
- YAN, J.; BAI, Z.; LI, W.; BAI, J. Direct liquefaction of a Chinese brown coal and CO2 gasification of the residues. Fuel, v. 136, p. 280–286, 2014.
- CLIFFORD, C. B.; SONG, C. Direct liquefaction (DCL) processes and technology for coal and biomass conversion. Woodhead Publishing Series in Energy. v. 19, p. 105–154, 2011.

XII Congresso Brasileiro de Engenharia Química em Iniciação Científica

UFSCar – São Carlos – SP 16 a 19 de Julho de 2017

- SCOTT, P. W. R. Chromatographic detectors: Design, function, and operation. Marcel Dekker, Inc. 1996.
- LIANG, M.; WANG, Z.; ZHENG, J.; et al. Hydrous pyrolysis of different kerogen types of source rock at high temperature-bulk results and biomarkers. Journal of Petroleum Science and Engineering, v. 125, p. 209–217, 2015.
- MICHELS, R.; LANDAIS, P. Artificial coalification: Comparison of confined pyrolysis and hydrous pyrolysis. Fuel, v. 73, n. 11, p. 1691–1696, 1994.