ANÁLISE NUMÉRICA DO USO DE ANÉIS DEFLETORES INTERNOS SOBRE O ESCOAMENTO GÁS-SÓLIDO EM *RISERS* DE FCC

V. ROSSBACH^{1*}, R. K. DECKER¹, D. NORILER¹, J. UTZIG^{1,2}, H. F. MEIER¹

¹Universidade Regional de Blumenau (FURB) ²Universidade Federal de Uberlândia (UFU) *e-mail: vivienrossbach@hotmail.com

RESUMO

O escoamento gás-sólido em *risers* de FCC é caracterizado por uma região diluída no centro e uma região densa em catalisador, próxima às paredes. Este comportamento, caracterizado com a heterogeneidade do campo de fração volumétrica, é responsável pelo contato ineficiente entre o gás e as partículas de catalisador. Uma alternativa para homogeneizar a fração volumétrica de sólidos na região de mistura é a inserção de anéis defletores internos na região de entrada do *riser*. Este trabalho analisa a inserção de anéis defletores em formato de aerofólio na região de entrada do *riser* para redirecionar o escoamento de partículas sólidas. Para isso, foram realizadas simulações numéricas utilizando abordagem Euleriana-Euleriana, com modelo de turbulência k-ε. A homogeneidade da distribuição de sólidos na seção transversal do *riser* foi avaliada a partir do seu desvio-padrão. Com auxílio das simulações numéricas e da aplicação da ANOVA, verificou-se que o menor desvio-padrão é obtido com anéis de 10mm de espessura.

1 INTRODUÇÃO

O craqueamento catalítico fluido (FCC – *Fluid Catalytic Cracking*) é um processo importante para a indústria de petróleo, convertendo gasóleo pesado de vácuo em frações leves, como a gasolina. Uma unidade de FCC consiste, basicamente, em um *riser*, onde ocorrem as reações químicas, e um regenerador, onde o coque depositado sobre o catalisador é removido. O gasóleo alimentado no *riser* é vaporizado e mistura-se com o catalisador preaquecido na região de mistura.

Devido à formação do perfil corepartículas de annulus. as catalisador acumulam-se na região das paredes. ocasionando sobrecraqueamento da alimentação próximo às paredes e subcraqueamento na região central do riser. Além disso, a complexidade da região de

entrada causa o aumento da turbulência, levando à retromistura e à formação de curtos-circuitos no escoamento gás-sólido (GUPTA e BERRUTI, 2000; JOHNSON e DAVYDOV, 2014).

O uso de anéis defletores internos no *riser* contribui para melhorar a distribuição da fração volumétrica de sólidos nas direções axial e radial do *riser* e tornar o escoamento mais homogêneo. Desta forma, é possível aumentar a transferência de calor e massa no processo e melhorar a conversão e a seletividade das reações químicas de FCC (JIN, WEI e WANG, 2003). O uso de anéis defletores no interior de *risers* de FCC foi investigado inicialmente por Jiang, Bi e Jean (1991), com o estudo da decomposição de ozônio utilizando partículas de FCC. Exceto com velocidades mais baixas de gás, a conversão de ozônio tornou-se mais uniforme

na direção radial e a conversão foi aumentada. Zhu, Salah e Zhou (1997) avaliaram a influência do uso de três anéis com área aberta de 70%, 90% e 95%, respectivamente, em cinco posições instalados axiais diferentes. Os resultados mostraram maior uniformidade da distribuição de sólidos na direção radial. Para velocidades altas de gás e baixas taxas mássicas de sólidos, foram observados perfis de distribuição radial reversa, com escoamento mais diluído nas paredes que no centro. Com área aberta de 70%, forma-se uma região mais densa na base que nos outros casos. A presença dos anéis também induz à formação de um perfil de velocidade axial em forma de S.

Samruamphianskun, Piumsomboom e Chalermsinsuwan (2012)realizaram simulações numéricas bidimensionais. variando os parâmetros geométricos dos anéis e a sua posição no riser e verificaram que os fatores mais importantes são a área aberta, a espessura do anel e o número de anéis. Chalermsinsuwan, Samruamphianksun e Piumsomboon (2014) realizaram estudos variando as condições operacionais e encontraram baixa fração volumétrica e maior velocidade do gás na região dos anéis.

O uso de defletores na zona de mistura aproxima 0 escoamento do perfil empistonado, quebrando o annulus e redirecionando as partículas de catalisador para o centro do riser, o que resulta em alta conversão diminuição do e sobrecraqueamento dos produtos nas paredes. A inserção de defletores na região de alimentação traz maior uniformidade na distribuição de partículas nesta região e diminui a velocidade da região core, reduzindo assim a subconversão em produtos (JOHNSON e DAVYDOV, 2014).

Neste trabalho, avalia-se a inserção de anéis defletores abaixo da entrada de alimentação em um *riser* de FCC em escala de laboratório. Através de simulações numéricas e análise estatística, foram selecionadas as variáveis com maior influência sobre o escoamento e determinados os seus valores mais adequados.

2 MODELAGEM MATEMÁTICA

A modelagem matemática adotada segue a abordagem Euleriana-Euleriana. Tanto a fase gasosa quanto a fase sólida são consideradas contínuas. A fase sólida é tratada como um pseudofluido. O escoamento gás-sólido tridimensional e transiente foi estudado a frio. Neste trabalho, visto que o objetivo é estudar o escoamento, não foram levados em consideração os fenômenos de transferência de calor e massa, bem como as reações químicas que ocorrem no *riser*. A turbulência da fase gasosa foi descrita através do modelo k-e para o escoamento diluído.

A fase gasosa representa o vapor em ascensão que é alimentado na base do reator. Considerou-se que a fase gasosa é composta apenas por ar ambiente. A fase sólida é representada pelo próprio catalisador de FCC. Neste trabalho foram utilizadas partículas do Grupo A de Geldart (GELDART, 1973).

Considera-se que a fase sólida tem comportamento granular. Para calcular a temperatura granular da fase sólida, recorre-se à Teoria Cinética do Escoamento Granular (KTGF, *Kinetic Theory of Granular Flow*).

De acordo com Elgobashi (1994), em leitos diluídos a fração volumétrica de sólidos varia entre 10^{-7} e 10^{-3} . Como a fração volumétrica de sólidos neste trabalho atinge valores máximos de cerca de 10⁻⁴, utilizou-se o modelo de arraste de Wen-Yu para descrever a interação entre as fases gasosa e sólida. Já a turbulência da fase gasosa é descrita pelo modelo k-e e o movimento das partículas é dominado pela turbulência da fase gasosa. As equações adotadas encontram-se Tabela 1 e representam o modelo na matemático utilizado pelo simulador Ansys FLUENT 14.0 (Ansys FLUENT Theory Guide, 2011).

(1)

(2)

Tabela 1 – Modelo Euleriano-Euleriano gás-sólido

Equações da continuidade:
Fase gás:
$$\frac{\partial}{\partial t} (f_g \rho_g) + \nabla \cdot (f_g \rho_g \mathbf{v}_g) = 0$$

Fase sólida:
$$\frac{\partial}{\partial t} (f_s \rho_s) + \nabla \cdot (f_s \rho_s \mathbf{v}_s) = 0$$

Conservação da quantidade de movimento:

Fase gás:
$$\frac{\partial}{\partial t} \left(f_g \rho_g \mathbf{v}_g \right) + \nabla \cdot \left(f_g \rho_g \mathbf{v}_g \mathbf{v}_g \right) = \nabla \cdot \mathbf{\tau}_g + f_g \rho_g \mathbf{g} - f_g \nabla p + \mathbf{F}_{gs}$$
 (3)

Fase sólida:
$$\frac{\partial}{\partial t} (f_s \rho_s \mathbf{v}_s) + \nabla \cdot (f_s \rho_s \mathbf{v}_s \mathbf{v}_s) = \nabla \cdot \boldsymbol{\tau}_s + f_s \rho_s \mathbf{g} - f_s \nabla p - \nabla p_s + \mathbf{F}_{sg}$$
 (4)

Tensor tensão:

Fase gás:
$$\mathbf{\tau}_{\mathbf{g}} = f_g \mu_g \left(\nabla \mathbf{v}_{\mathbf{g}} + \left(\nabla \mathbf{v}_{\mathbf{g}} \right)^T \right) - \frac{2}{3} f_g \mu_g \left(\nabla \cdot \mathbf{v}_{\mathbf{g}} \right) \mathbf{I} + f_g \tau_t$$
 (5)

Fase sólida:
$$\boldsymbol{\tau}_{s} = f_{s} \boldsymbol{\mu}_{s} \left(\nabla \mathbf{v}_{s} + (\nabla \mathbf{v}_{s})^{T} \right) - \frac{2}{3} f_{s} \boldsymbol{\mu}_{s} \left(\nabla \cdot \mathbf{v}_{s} \right) \mathbf{I}$$
 (6)

Modelo de arraste:

Modelo de arraste:
Fase gás:
$$\mathbf{F}_{draggs} = \beta (\mathbf{v}_s - \mathbf{v}_g)$$
 (7)

Fase sólida:
$$\mathbf{F}_{drag,sg} = \beta (\mathbf{v}_{g} - \mathbf{v}_{s})$$
 (8)

Modelo de Wen-Yu:

Coeficiente de transferência:
$$\beta = \frac{3}{4}C_D \frac{|\mathbf{v}_s - \mathbf{v}_g| f_s \rho_g}{d_s} f_g^{-2.65}$$
 (9)

Coeficiente de arraste:

Para Re > 1000:
$$C_D = 0,44$$
 (10)

Para Re
$$\leq 1000$$
: $C_D = \frac{24}{\text{Re}} \left(1 + 0.15 \,\text{Re}^{0.687} \right)$ (11)

Modelo KTGF:

Viscosidade dinâmica: $\mu_s = \mu_{s,col} + \mu_{s,kin} + \mu_{s,fr}$ (12)

Termo colisional:
$$\mu_{s,col} = \frac{4}{5} \alpha_s \rho_s d_s g_0 (1 + e_{ss}) \sqrt{\frac{\theta}{\pi}}$$
 (13)

Termo cinético:
$$\mu_{s,kin} = \frac{10\rho_s d_s \sqrt{\pi\theta}}{96\alpha_s (1+e_{ss})g_0} \left[1 + \frac{4}{5}g_0 \alpha_s (1+e_{ss}) \right]$$
(14)

Termo friccional:
$$\mu_{s,fr} = \frac{p_s \sin \varphi}{2\sqrt{I_{2D}}}$$
 (15)

Pressão dos sólidos:
$$p_s = \alpha_s \rho_s \Theta + 2\rho_s (1 + e_{ss}) \alpha_s^2 g_0 \Theta$$
 (16)

(18)

(22)

(23)

(24)

(25)

Função de distribuição radial: $g_0 = \left[1 - \left(\frac{f_s}{f_{s,máx}}\right)^{\frac{1}{3}}\right]^{-1}$ (17)

Viscosidade de compressão: $\lambda_s = \frac{4}{3} \alpha_s \rho_s d_s g_0 (1 + e_{ss}) \sqrt{\frac{\Theta}{\pi}}$

Temperatura granular:

$$\frac{3}{2} \left[\frac{\partial}{\partial t} \left(\rho_s f_s \Theta_s \right) + \nabla \cdot \left(\rho_s f_s \mathbf{v}_s \Theta_s \right) \right] = \left(-P_s \mathbf{I} + \boldsymbol{\tau}_s \right) : \nabla \mathbf{v}_s + \nabla \cdot \left(k_{\Theta_s} \nabla \Theta_s \right) - \gamma_{\Theta_s} + \phi_{gs}$$
(19)

Modelo de turbulência k-ε:

Energia cinética turbulenta:
$$\frac{\partial}{\partial t} \left(f_g \rho_g k_g \right) + \nabla \cdot \left(f_g \rho_g \mathbf{v}_g k_g \right) = \nabla \cdot \left(f_g \frac{\mu_{t,g}}{\sigma_k} \nabla k_g \right) + f_g G_{k,g} - f_g \rho_g \varepsilon_g$$
(20)

Dissipação de energia cinética turbulenta:

$$\frac{\partial}{\partial t} \left(f_g \rho_g \varepsilon_g \right) + \nabla \cdot \left(f_g \rho_g \mathbf{v}_g \varepsilon_g \right) = \nabla \cdot \left(f_g \frac{\mu_{t,g}}{\sigma_\varepsilon} \nabla \varepsilon_g \right) + f_g \frac{\varepsilon_g}{k_g} \left(C_{1\varepsilon} G_{k,g} - C_{2\varepsilon} \rho_g \varepsilon_g \right)$$
(21)

Produção de energia cinética turbulenta: Dissipação da flutuação de energia:

Viscosidade do gás: $\mu_g = \mu_{l,g} + \mu_{t,g}$

Viscosidade turbulenta:
$$\mu_{t,g} = \rho_g C_\mu \frac{k_g^2}{\varepsilon_g}$$

3 MATERIAIS E MÉTODOS

Para a realização das simulações numéricas foram testadas três malhas, contendo, respectivamente, 265000, 380000 e 578000 volumes de controle. A malha de 380000 volumes de controle foi escolhida através da verificação da estabilidade da solução numérica.

As medidas geométricas do *riser* e dos anéis são indicadas na Figura 1. A partir do planejamento fatorial 2^{4-1} , foram realizadas simulações numéricas com diversas configurações de anéis defletores. Estas configurações são apresentadas na Figura 2.

Por analogia com o formato aerodinâmico de um aerofólio, foi proposto o formato de anel defletor apresentado na Figura 1. De acordo com Anderson Jr. (2015), o formato do aerofólio retarda o descolamento da camada limite laminar e a formação de vórtices, responsáveis pela retromistura e por curtos-circuitos, além de amenizar as diferenças de pressão ao longo da sua área. Quanto mais suave é a curva do aerofólio, menor é a queda de pressão.

O planejamento experimental 2^{4-1} , apresentado na Tabela 3, foi proposto para avaliar a influência sobre o escoamento de quatro variáveis: a espessura do anel (X_A), o espaçamento entre anéis (X_B), o número de anéis (X_C) e a presença de um anel abaixo da entrada de catalisador (X_D).

A partir do planejamento experimental, foram realizadas simulações numéricas utilizando o modelo matemático

proposto na Tabela 1 com o código de CFD FLUENT 14.0 da Ansys. Como as amostras são de tamanhos iguais, calcula-se o desviopadrão (σ) das mesmas para avaliar a homogeneidade da distribuição da fração volumétrica de sólidos na seção transversal, como variável de resposta do planejamento. As amostras utilizadas são obtidas a partir de dados das simulações numéricas em três alturas - 1,05m, 1,2m e 1,35m – conforme indicado na Figura 1.

Figura 1 – Medidas geométricas do riser.

4 RESULTADOS E DISCUSSÃO

As geometrias construídas a partir do planejamento experimental são apresentadas na Figura 2. Foram resolvidos 15 segundos de simulação numérica para cada caso, com passo de tempo de 1×10^{-3} s. As propriedades físicas e operacionais do sistema são descritas na Tabela 2. Nas paredes, adotou-se condição de não-deslizamento para o gás e livre deslizamento para as partículas.

Com os dados obtidos das simulações numéricas, realizou-se a análise estatística dos dados pela ANOVA (*Analisys of Variance*).

Tabela 2 – Propriedades físicas e condições

operacionais do escoamento.	
Massa específica do	$1500 kg/m^{3}$
catalisador	1300Kg/III
Diâmetro das partículas de	67um
catalisador	07µ11
Velocidade do gás	5,6m/s
Vazão mássica de sólidos	0,0086kg/s
Fluxo mássico de sólidos	1,41kg/m²s
Razão de carga	0,181kg sól/m ³ gás
Carregamento mássico	0,151kg sól/kg gás

A Tabela 3 mostra o planejamento fatorial 2⁴⁻¹ com o desvio-padrão médio das três amostras. O menor desvio-padrão foi obtido no Caso 3, indicando maior homogeneidade da distribuição de partículas sólidas na seção transversal.

	Tabela 3 –	Planejamento	experimental	2^{4-1}
--	------------	--------------	--------------	-----------

Caso	V	ariáveis c	ontrolada	as	Variável de
	X	Хр	Xc	XD	resposta $\sigma \times 10^{-3}$
Sem	A -	B -	-	-	5,047
1	10	60	2	0	4,737
2	15	60	2	1	4,730
3	10	100	2	1	4,711
4	15	100	2	0	4,803
5	10	60	3	1	4,790
6	15	60	3	0	4,732
7	10	100	3	0	4,757
8	15	100	3	1	4,804

Através do *software* Statistica, aplicou-se a ANOVA fatorial sobre os dados do planejamento experimental, para estimar a influência das variáveis controladas sobre a variável de resposta. A partir desta análise obteve-se a Equação 26, que prediz os efeitos das variáveis e suas interações sobre o desviopadrão da fração volumétrica de sólidos na seção transversal do *riser*.

$$\begin{split} &\sigma \times 10^{-3} = 4,758 - 0,01275 X_{A}(10 \text{ mm}) \\ &- 0,00925 X_{B}(60 \text{ mm}) - 0,01075 X_{C}(2) \\ &- 0,75 \times 10^{-3} X_{D}(0) - 0,012 X_{A} X_{B} \\ &- 0,001 X_{B} X_{C} + 0,0255 X_{C} X_{D} \end{split}$$

A Equação 26 mostra que as variáveis $X_A e X_C e$ as interações entre os efeitos $X_A X_B$ e $X_C X_D$ exercem maior influência sobre o desvio-padrão da fração volumétrica de sólidos na seção transversal.

A Figura 3 mostra a superfície de resposta das variáveis X_A e X_D sobre o desvio-padrão, onde os menores valores de desvio-padrão são obtidos com a utilização de dois anéis com 10mm de espessura. As interações entre efeitos $X_A X_B$ e $X_C X_D$ são apresentadas nas Figuras 4-(a) e 4-(b).

Figura 3 – Superfície de resposta das variáveis $X_A e X_C$ sobre o desvio-padrão.

Figura 4 – Superfícies de resposta das interações $X_A X_B$ e $X_C X_D$ sobre o desvio-padrão. (a)

Os menores valores de desvio-padrão são obtidos com anéis de 10mm com espaço de cerca de 65mm entre si e os valores mínimos das variáveis X_C e X_D produzem os melhores resultados. Desta forma, a inserção de dois anéis produz um bom resultado, enquanto a presença do anel abaixo da entrada de sólidos tem efeito negativo sobre o desviopadrão. Na Figura 5, observa-se a distribuição axial da fração volumétrica de sólidos para o Caso 3, que apresentou o melhor resultado quanto à distribuição radial de sólidos e ao seu desvio-padrão. O anel localizado abaixo da entrada de sólidos tem a função de redirecionar o escoamento do gás, o que auxilia na distribuição das partículas ao longo da seção transversal do riser.

Na Figura 5, observa-se a tendência de escoamento de sólidos na parede oposta à sua entrada, porém as partículas são bem distribuídas ao longo do *riser*. A utilização de anéis de 10mm melhorou a distribuição de sólidos, enquanto a maior espessura resultou em pior distribuição. Os resultados permitem ainda constatar que o regime de escoamento é de fato diluído.

A tendência de os sólidos escoarem na parede oposta à sua entrada pode ser atribuída à curva de entrada de gás ou à própria entrada de sólidos. Para avaliar este efeito, é necessário realizar testes sem a curva na entrada de gás. Estes testes, bem como a construção dos anéis defletores para obtenção de dados experimentais, estão em andamento e serão publicados em trabalhos futuros. A validação do modelo matemático com dados experimentais permitirá, ainda, a ampliação de escala do experimento, visando à escala industrial.

A simples análise do desvio-padrão não garante a homogeneidade da distribuição de sólidos no *riser*, tornando-se necessária a análise visual dos resultados. Desta forma, os dados estatísticos devem ser confrontados com dados visuais de simulações numéricas para se identificar a melhor distribuição de fração volumétrica dentre os casos simulados.

Figura 5 – Contornos de fração volumétrica de sólidos na direção axial para o Caso 3.

A análise dos contornos de fração volumétrica na seção transversal do riser, apresentada na Figura 6. auxilia na identificação do experimento com melhor distribuição de sólidos. Os Casos 3 e 5 têm distribuições de sólidos bastante semelhantes, o que não é indicado pela análise de desvio padrão. Em relação ao Caso 2, no entanto, a comparação entre o desvio-padrão calculado e a análise visual dos contornos fornecem as mesmas conclusões.

O padrão de distribuição mantém-se ao longo da direção axial na região medida. Logo, os anéis aumentam a homogeneidade da distribuição de sólidos nas direções axial e radial. Ao se afastarem dos anéis, as partículas sólidas tendem a se distribuir do centro em direção às paredes. Nos casos 2, 3 e 5, este comportamento é mais bem observado.

Figura 6 – Contornos de fração volumétrica de sólidos na seção transversal.

A Tabela 4 mostra a perda de pressão em cada caso, em comparação com o riser sem anéis.

Tabela	4 –	Perda	de	pressão	no	riser
Labera	-	1 Uluu	uv	pressuo	no	riser

Caso	<i>∆p</i> (Pa)
Sem anéis	83,96
1	90,18
2	179,00
3	101,32
4	141,17
5	112,09
6	168,44
7	96,78
8	215,84

A perda de pressão no riser é proporcional ao número de anéis e à espessura do anel. Nos Casos 1, 3, 5 e 7, onde a espessura do anel é de 10mm, a perda de pressão é baixa em comparação com o riser sem anéis. Já nos demais casos, a perda de pressão é maior. O Caso 3, que apresentou a

melhor distribuição de sólidos, tem uma perda de pressão consideravelmente baixa. Estes dados condizem com a teoria apresentada em Anderson Jr. (2015) para o escoamento na superfície do aerofólio. No riser com anéis defletores estudado, da mesma forma como em um aerofólio, a menor espessura do anel causa menor queda de pressão.

5 CONCLUSÕES

Através da análise dos dados obtidos, conclui-se que os anéis defletores em formato de aerofólio são capazes de redistribuir o escoamento gás-sólido e homogeneizar a distribuição de partículas no riser.

A aplicação da ANOVA mostrou que a espessura do anel (X_A), o número de anéis (X_C) e as interações X_AX_B e X_CX_D são as variáveis com maior influência sobre a distribuição de sólidos no riser. А comparação entre os resultados estatísticos e os contornos de fração volumétrica de sólidos

obtidos a partir das simulações permite identificar o Caso 3 como a melhor configuração geométrica para o *riser* com anéis. A configuração geométrica do Caso 3 apresentou boa distribuição de sólidos nas direções radial e axial e uma baixa perda de pressão ao longo do *riser*.

A assimetria do escoamento deve ser verificada através da realização de simulações numéricas sem a curva de entrada de gás. Desta forma, será possível confirmar se este efeito é causado pela curva de entrada de gás ou pela própria entrada de sólido.

NOMENCLATURA

Letras latinas:

$C_{l\varepsilon}$	constante do modelo k-e igual a 1,44
	[-]
$C_{2\varepsilon}$	constante do modelo k-e igual a 1,92
	[-]
$\mathrm{C}_{\mathfrak{Z}_{\mathcal{E}}}$	constante do modelo k-ε igual a 1,2 [-]
C_D	coeficiente de arraste [-]
C_{μ}	constante do modelo k-ε igual a 0,09
	[-]
d	diâmetro [m]
e_{ss}	coeficiente de restituição igual a 0,9
	[-]
f	fração volumétrica [-]
F	força de interação [N]
g	aceleração da gravidade igual a
	$9,87 \text{m/s}^2 \text{ [m}^2 \text{ s}^{-1} \text{]}$
g_0	função de distribuição radial [-]
$\mathbf{G}_{k,g}$	termo de geração turbulenta
	$[\text{kg m}^{-1} \text{ s}^{-5}]$
Ι	tensor unitário [Pa]
Ι	módulo do tensor unitário [Pa]
k	energia cinética turbulenta [m ² s ⁻²]
$\mathbf{k}_{\Theta s}$	difusão de energia da fase sólida
	$[m^2 s^{-1}]$
p_s	pressão dos sólidos [Pa]
p_{μ}	pressão [Pa]
P	produção de energia cinética
	turbulenta [Pa s ⁻⁺]

- *Re* número de Reynolds [-]
- U velocidade ponderada [m s⁻¹]
- **v** velocidade $[m s^{-1}]$
- X_i variáveis do planejamento experimental [-]

Letras gregas:

- *α* ângulo interno de fricção [°]
- β coeficiente de transferência entre as fases [kg m⁻³ s⁻¹]
- γ dissipação da flutuação de energia [kg m⁻¹ s⁻³]
- ε dissipação de energia cinética turbulenta [m² s⁻³]
- Θ temperatura granular [m² s⁻²]
- θ ângulo entre velocidade média da partícula e velocidade média relativa [°]
- μ viscosidade [kg m⁻¹ s⁻¹]
- λ viscosidade mássica [kg m⁻¹ s⁻¹]
- π constante pi [-]
- ρ massa específica [kg m⁻³]
- σ desvio-padrão [-]
- τ tensor tensão turbulento [Pa]
- τ_t tensor tensão turbulenta [Pa]
- φ ângulo de contato [°]
- ϕ_{gs} termo de interação entre as fases [kg m⁻¹ s⁻³]

Subscritos:

g	fase gás
5	fase sólida
drag	arraste
col	colisional
kin	cinético
fr	friccional
máx	máximo
l	laminar
t	turbulento
drift	tração

REFERÊNCIAS

ANDERSON JR., J. E. **Fundamentos de Engenharia Aeronáutica**: introdução ao vôo. 7. ed. São Paulo: McGraw-Hill LLC, 2015. 925 p.

ANSYS FLUENT Theory Guide. Canonsburg (PA): Ansys, Inc., 2011. CHALERMSINSUWAN, B.; SAMRUAMPHIANSKUN,T.; PIUMSOMBOON, P. Effect of operating

parameters inside circulating fluidized bed reactor riser with ring baffles using CFD simulation and experimental design analysis. **Chemical Engineering Research and Design**, v. 92, p. 2479–2492, 2014.

ELGOBASHI, S. E. On predicting particleladen turbulent flows. **Journal of Applied Scientific Research**, v. 52, n. 4, p. 309-329, 1994.

GELDART, D. Types of gas fluidization. **Powder Technology**, v. 7, p. 285-292, 1973.

GUPTA, S. K.; BERRUTI, F. Evaluation of the gas–solid suspension density in CFB risers with exit effects. **Powder Technology**, v. 18, p. 21-31, 2000.

JIANG, P.; BI, H.; JEAN, R. Baffle effects on performance of catalytic circulating fluidized bed reactor. **AIChE Journal**, v. 37, p. 1392-1400, 1991.

JIN, Y.; WEI, F.; WANG, Y. Effect of internal tubes and baffles. In: YANG, W. C. **Handbook of fluidization and fluid-particle** systems. New York: Marcel Dekker, 2003. Cap. 7, p. 851.

JOHNSON, D. R.; DAVYDOV, L. **Baffles for improving riser hydrodynamics**. US8877132B2, 4 nov. 2014. SAMRUAMPHIANSKUN, T.; PIUMSOMBOON, P.; CHALERMSINSUWAN, B. Effect of ring baffle configurations in a circulating fluidized bed riser using CFD simulation and experimental design analysis. **Chemical Engineering Journal**, v. 210, p. 237-251, 2012.

ZHU, J. X.; SALAH, M.; ZHOU, Y. M. Radial and axial voidage distributions in circulating fluidized bed with ring-type internals. **Japanese Journal of Chemical Engineering**, v. 30, n. 5, p. 928-937, 1997.

AGRADECIMENTOS

Os autores agradecem o apoio financeiro da PETROBRAS para a realização desta pesquisa, através do termo de cooperação 0050.0070 334.11.9.