CINÉTICA E TERMODINÂMICA DA ADSORÇÃO DE CAROTENÓIDES E CLOROFILAS NO BRANQUEAMENTO DE ÓLEO DE FARELO DE ARROZ

R. S. POHNDORF^{1*}, F. F. YOUNAN¹, J. F. COSTA¹, B. S. FARIAS¹, T. R. S. CADAVAL Jr¹, L. A. A. PINTO¹

¹Universidade Federal do Rio Grande, Escola de Química e Alimentos ^{*}e-mail: ricardoscherer.eng@gmail.com

RESUMO

Neste trabalho, a adsorção de carotenóides e clorofilas no branqueamento de óleo de farelo de arroz (OFA) foi investigada em diferentes temperaturas (100, 110 e 120 °C) e concentrações de terra ativada (0,5-2,5% m/m). O estudo cinético revelou que a partir de 20 min a capacidade de adsorção tende ficar constante. O modelo de pseudo-primeira ordem foi mais adequado para descrever o comportamento cinético da adsorção de clorofilas, e o modelo de pseudo-segunda ordem ajustou-se satisfatoriamente aos dados experimentais para a adsorção de carotenóides. A elevação da temperatura de 100 °C para 120 °C aumentou 20% a capacidade máxima de adsorção de carotenóides e 35% a adsorção de clorofilas. O modelo de Freundlich foi adequado para representar os dados de equilíbrio para ambos os pigmentos. O branqueamento de OFA foi considerado um processo endotérmico, favorável e espontâneo. O calor isostérico da adsorção indicou que a superfície da terra ativada é heterogênea.

1 INTRODUÇÃO

A produção mundial de arroz (*Oryza sativa* L.) tem aumentado nos últimos anos, principalmente devido à expansão da área plantada e o aumento na produtividade. Além da casca (20% do grão) que serve de biomassa para produção de energia em caldeiras, o farelo de arroz (8-11% do grão) contém proteínas (12-13% m/m), carboidratos (48-60% m/m) e lipídios (18-25% m/m) (SILVA, SANCHES e AMANTE, 2006).

O óleo de farelo de arroz (OFA) apresenta características diferenciadas entre os óleos vegetais. Além de ser obtido a partir de um subproduto, ele possui alto teor de fitoquímicos e ácidos graxos mono e poliinsaturados. O óleo de farelo de arroz é uma das poucas fontes ricas em fitoquímicos bioativos comercialmente importantes e de interesse nutricional, farmacêutico e cosmético. Ele auxilia na redução do colesterol LDL devido ao seu perfil de ácidos graxos e o alto teor de compostos insaponificáveis. O óleo de farelo de arroz contém γ-orizanol, que apresenta efeito anti-inflamatório e protetor contra o estresse oxidativo, auxiliando no controle da diabete (KANAYA et al., 2004).

O refino químico é largamente aplicado nas indústrias de óleos vegetais, inclusive em OFA. Neste processo o óleo bruto é degomado, neutralizado, branqueado, decerado e desodorizado. Outra forma de purificar o óleo é através do refino físico, que tem sido avaliado no óleo de farelo de arroz para diminuir as perdas de y-orizanol durante o refino químico, especialmente na etapa de neutralização (PAUCAR-MENACHO et al., 2007).

A etapa de branqueamento é importante tanto para o refino químico quanto para o

físico, uma vez que ela é responsável pela remoção de pigmentos, produtos de oxidação primária (peróxidos) e secundária (aldeídos, cetonas e alcoóis), além de ser a única etapa capaz de remover traços de metais que podem favorecer a oxidação do óleo (MONTE et al., 2015).

Assim, objetivo neste trabalho foi estudar influência da temperatura e da concentração de adsorvente no processo de branqueamento de óleo de farelo de arroz. A cinética de adsorção de carotenóides e clorofilas foi avaliada pelos modelos cinéticos de pseudo-primeira ordem, pseudo-segunda ordem e Elovich. As isotermas de equilíbrio diferentes foram obtidas utilizando concentrações de adsorventes, e as curvas foram ajustadas aos modelos de Langmuir e Freundlich. As variações dos parâmetros termodinâmicos energia livre de Gibbs (ΔG^0), entalpia (ΔH^0), entropia (ΔS^0) e calor isostérico (ΔH_a) foram estimadas.

2 MATERIAL E MÉTODOS

O óleo de farelo de arroz neutralizado foi obtido em uma empresa de refino de óleo local, e acondicionado à -20 °C para evitar oxidação. Os experimentos foram realizados no Laboratório de Operações Unitárias da Escola de Química e Alimentos (EQA) da Universidade Federal do Rio Grande (FURG), localizada no sul do Brasil. Foi utilizada terra ativada (Tonsil Supreme 110 FF) como adsorvente comercial nos ensaios de branqueamento.

2.1 Caracteríticas do adsorvente

A terra ativada foi caracterizada por microscopia eletrônica de varredura (MEV) (Jeol, JSM-6060, Japão) e espectroscopia de energia dispersiva (EDS) (Jeol, JSM-5800, Japão). A área superficial do adsorvente foi determinada por um analisador de adsorção volumétrica (Quantachrome Instruments, New Win 2, EUA) usando o método Brunauer, Emmet e Teller (BET).

2.2 Determinação de carotenóides e clorofilas

A determinação da concentração de carotenóides foi realizada por espectrofotometria (Quimis, Q108, Brasil). Amostras de OFA foram diluídas em hexano (10% m/v) e filtradas. A concentração de carotenóides foi obtida por leituras de absorbância a 446 nm e expressa em mg kg⁻¹ (Equação 1), de acordo com metodologia proposta por MPOB (2005).

$$C = \frac{383A_{446}}{Lc}$$
(1)

onde *C* é a concentração de carotenóides (mg kg⁻¹), *A* é a leitura de absorbância á 446 nm, *L* é o comprimento da cubeta (cm), *c* é a concentração da solução de óleo em hexano (g 100mL⁻¹) e *383* é o coeficiente de extinção para carotenóides.

A concentração de clorofilas (predominantemente feofitina-*a*) foi determinada por absorbância nos comprimentos de onda 630, 670 e 710 nm (Sabah, 2007), e calculada pela Equação 2.

$$Cl = \frac{\left[A_{670} - (A_{360} + A_{710})/2\right]V}{0.0964ML}$$
(2)

onde Cl é a concentração de clorofilas (mg kg⁻¹), A_i é a leitura de absorbância no comprimento de onda *i* (nm), *V* é o volume de hexano (mL), *L* é a largura da cubeta (cm) e *M* é a massa de óleo (g).

2.3 Experimentos de adsorção

Amostras (40 g) de OFA neutralizado foram aquecidas sob agitação constante (40 rpm) utilizando um agitador magnético com aquecimento. A taxa de aquecimento foi de 7 °C min⁻¹, e o óleo foi mantido à pressão

absoluta de 70 mmHg. Após atingir a temperatura desejada, o adsorvente foi adicionado ao óleo. As curvas cinéticas foram obtidas ao longo de 60 min utilizando 1% m/m de terra ativada à 120±1 °C. Para as de equilíbrio foram utilizadas curvas diferentes concentrações de adsorvente (0,5-2.5 % m/m), em diferentes temperaturas (100-120 °C). O tempo de contato entre o adsorvente e o óleo foi de 120 min (BAYRAK, 2003). O adsorvente foi separado imediatamente do óleo por centrifugação $(3500 \times g \text{ por } 3 \text{ min})$. Os parâmetros utilizados neste estudo foram baseados em testes preliminares e dados da literatura (RIBEIRO et al., 2001; SILVA et al., 2013). Os experimentos foram realizados em triplicata. As amostras foram analisadas quanto as concentrações de carotenóides e clorofilas. A capacidade de adsorção em qualquer tempo (q_t) e no equilíbrio (q_e) foram determinadas pelas Equações 3 e 4, respectivamente:

$$q_t = \frac{M_o(C_i - C_t)}{M_a} \tag{3}$$

$$q_e = \frac{M_o(C_i - C_e)}{M_a} \tag{4}$$

onde M_o é a quantidade de óleo (kg), M_a é a quantidade de adsorvente (kg) C_i é a concentração inicial do adsorbato (mg kg⁻¹), C_t e C_e são as concentrações do adsorbato (mg kg⁻¹) no tempo *t* e no equilíbrio (*t*=120 min), respectivamente.

2.4 Modelos cinéticos e de equilíbrio

O comportamento cinético da adsorção de pigmentos foi obtido por ajuste dos modelos de pseudo-primeira ordem (Equação 5), pseudo-segunda ordem (Equação 6) e Elovich (Equação 7). Estes modelos são baseados na capacidade de adsorção ao invés da concentração da solução

$$q_t = q_1(1 - \exp(-k_1 t))$$
(5)

$$q_t = \frac{t}{(1/k_2 q_2)^2 + (t/q_2)} \tag{6}$$

$$q_t = \frac{1}{a} + \ln(1 + abt) \tag{7}$$

onde k_1 e k_2 são as constantes da taxa de adsorção para os modelos de pseudo-primeira ordem (min⁻¹) e pseudo-segunda ordem (kg mg⁻¹ min⁻¹) respectivamente, q_1 e q_2 representam a capacidade máxima de adsorção teórica (mg kg⁻¹) no tempo *t* (min), *a* é o parâmetro do modelo de Elovich associado a velocidade inicial (mg kg⁻¹min⁻¹) e *b* é a constante de dessorção (kg mg⁻¹).

O efeito da temperatura de branqueamento na constante da taxa de adsorção foi analisado pela relação de Arrhenius (Equação 8).

$$k = Ae^{-\frac{Ea}{RT}}$$
(8)

onde k é a constante da taxa de adsorção associado a velocidade da adsorção (min⁻¹), Aé o fator de frequência (s⁻¹), Ea é a energia de ativação (kJ mol⁻¹), R é a constante universal dos gases (8,314 kJ mol⁻¹ K⁻¹) e T é a temperatura absoluta (K).

As isotermas de equilíbrio foram ajustadas pelos modelos de Langmuir e Freundlich. O modelo de Langmuir (Equação 9) assume que a adsorção ocorre em monocamada, onde a superfície do adsorvente é homogênea e os sítios ativos possuem a mesma afinidade e energia. A isoterma de Freundlich (Equação 10) assume que a superfície do adsorvente é heterogênea, e que a quantidade de adsorbato adsorvida aumenta infinitamente com a concentração (SILVA et al., 2013):

$$q_e = \frac{q_m k_L C_e}{1 + (k_L C_e)} \tag{9}$$

$$q_e = k_F C_e^{1/nF} \tag{10}$$

onde K_F é a constante de Freundlich (mg kg⁻¹_{adsorvente}) (mg kg⁻¹_{óleo})^{-1/nF}, $1/n_F$ é o fator de heterogeneidade, q_m é a capacidade máxima de adsorção (mg kg⁻¹_{adsorvente}) e K_L é a constante de Langmuir (kg _{adsorvente} mg⁻¹).

2.5 Avaliação dos parâmetros termodinâmicos

A adsorção de pigmentos de OFA foi avaliada pelas variações de energia livre de Gibbs (ΔG^0 , kJ mol⁻¹), de entalpia (ΔH^0 , kJ mol⁻¹) e de entropia (ΔS^0 , kJ mol⁻¹ K⁻¹). Estes valores foram estimados por meio dos parâmetros obtidos no melhor ajuste das isotermas de acordo com as Equações 11 e 12 (MILONJIĆ, 2007).

$$\Delta G^0 = -RT \ln(k_e) \tag{11}$$

$$\frac{\Delta G^0}{RT} = \frac{\Delta H^0}{RT} - \frac{\Delta S^0}{R}$$
(12)

onde K_e é a constante de equilíbrio adimensional obtida a partir das isotermas linearizadas, *T* é a temperatura absoluta (K) e *R* é a constante universal dos gases (8,314 kJ mol⁻¹ K).

O calor envolvido na adsorção a uma área superficial constante ou calor isostérico $(\Delta H_a, \text{ kJ mol}^{-1})$ é um importante parâmetro termodinâmico utilizado para elucidar a natureza da adsorção de pigmentos e pode ser obtido a partir da Equação 13, derivada da equação de Clausius–Clapeyron (BAYRAK, 2003).

$$\ln C_e = \frac{\Delta H_a}{R} \frac{1}{T} \tag{13}$$

2.6 Análise estatística

Os modelos cinéticos foram ajustados aos dados experimentais através de regressão não linear usando o método Quasi-Newton. A qualidade do ajuste foi obtida pelo coeficiente determinação $(R^{2}),$ coeficiente de de determinação ajustado (R^2_{aju}) e erro médio relativo (EMR). Os parâmetros foram obtidos pelo software Statistic 7.0 (StatSoft, EUA) e gráfico construídos pelo software os SigmaPlot 10.0 (Systat, EUA).

3 RESULTADO E DISCUSSÃO

3.1 Características do adsorvente

As terras ativadas são largamente utilizadas no branqueamento de óleo vegetais. argilominerais Basicamente são com superfície ativada por tratamento ácido e em sua composição possuem silicatos hidratados de alumínio, ferro e magnésio. O uso de bentonita, sepiolita e atapulgita tem sido reportado na literatura para a adsorção de pigmentos em óleos (LIU, HUANG e WANG, 2008). A Figura 1A apresenta uma imagem (MEV) da terra ativada utilizada neste estudo (Tonsil Supreme 110 FF). Observam-se partículas diferentes com formatos, superfície irregular e com diâmetro predominantemente inferior a 50 µm. A composição elementar mostrada no espectro EDS (Figura 1B) indica em percentual mássico a presença de silício $(51,32\pm8,81\%)$, $(13, 26\pm 2, 72)$ %), oxigênio alumínio $(22,21\pm3,27 \text{ \%}), \text{ ferro } (5,28\pm1,67 \text{ \%}) \text{ e}$ magnésio (2,02±0,52 %), além de outros elementos em menor concentração. O alto teor de silicatos no adsorvente tende a melhorar a capacidade de branqueamento. A área superficial determinada por BET para terra ativada foi de 240,1 \pm 5,9 m² g⁻¹. Didi et al. (2009) caracterizou adsorventes comerciais utilizados no branqueamento de óleos vegetais, indicando que a área superficial varia entre 165 e 340 m² g⁻¹. A área superficial depende principalmente da intensidade do tratamento ácido empregado, e

capacidade é proporcional a de branqueamento do óleo. A ativação ácida proporciona uma substituição de cátions por prótons. Os íons metálicos (Fe⁺², Mg⁺² e Al⁺³) são substituídos por prótons que constituem centros ativos de interação entre a partícula adsorvente e as moléculas adsorvidas (CHRISTIDIS, SCOTT e DUNHAM, 1997).

Figura 1 – Características de terra ativada comercial: (A) imagem de MEV e (B) espectro EDS

Fonte: Autor (2015).

3.2 Estudo cinético

A Figura 2 apresenta as curvas cinéticas da adsorção de carotenóides de OFA em diferentes temperaturas (100, 110 e 120 °C) utilizando 1% (m/m) de adsorvente em relação ao óleo. A adsorção de carotenóides ocorre rapidamente nos primeiros 10 min do processo, onde 69, 77 e 87 % da capacidade máxima de adsorção foram alcançadas para as temperaturas de 100. 110 e 120 °C. respectivamente. Após 10 min de branqueamento a taxa de adsorção de carotenóides diminui drasticamente, tendendo a estabilizar após 30 min. O aumento da temperatura de 100 para 120 °C proporcionou um ganho de 20% na capacidade máxima de adsorção de carotenóides. Embora altas temperaturas aumentem a taxa de adsorção, podem também causar degradação de compostos menores, hidrólise de ácidos graxos e autoxidação no óleo. Neste sentido, a máxima de branqueamento temperatura depende das características de cada óleo. Ma e Lin (2004) sugerem que em temperaturas menores do que 100 °C, a adsorção é comandada por forças de van der Walls (fisissorção), e que o aumento da temperatura favorece a adsorção de β-caroteno tanto nas camadas mais externas quanto nos poros do adsorvente.

Figura 2 – Influência da temperatura na cinética da adsorção de carotenóides de óleo de farelo de arroz

Fonte: Autor (2015).

As curvas cinéticas da adsorção de clorofilas são apresentadas na Figura 3. O comportamento da adsorção de clorofilas foi semelhante ao apresentado na adsorção de carotenóides, com uma elevada taxa de adsorção inicial e progressiva diminuição até o final do processo. A capacidade de adsorção de clorofilas foi maior do que a de carotenóides em 60 min. O aumento da temperatura de 100 para 120 °C aumentou 35% a capacidade máxima de adsorção de clorofilas. De acordo com Tong et al. (2008), as clorofilas são adsorvidas e alcançam o

equilíbrio mais rapidamente na superfície da terra ativada indicando maior interação química entre o adsorvente e o adsorbato.

Figura 3 – Influência da temperatura na cinética da adsorção de clorofilas de OFA

Fonte: Autor (2015).

Os modelos de pseudo-primeira ordem, pseudo-segunda ordem e Elovich foram ajustados às curvas cinéticas experimentais. Os resultados são apresentados na Tabela 1. Baseado nos maiores valores de coeficiente de determinação (R^2) , coeficiente de determinação ajustado (R^{2}_{aju}) e nos menores valores de erro médio relativo (EMR), pode ser afirmado que os modelos mais adequados para representar a cinética de adsorção de carotenóides e clorofilas foram respectivamente, os modelos de pseudosegunda ordem e pseudo-primeira ordem. Entretanto o modelo de Elovich apresentou um bom ajuste, tanto para carotenóides quanto para clorofilas, uma vez que o modelo é utilizado em sistemas heterogêneos.

A constante da taxa de adsorção (k_1) diretamente relacionada com está а velocidade da adsorção. Neste respeito, os carotenóides adsorvidos foram mais rapidamente do que as clorofilas, entretanto os valores foram próximos. O aumento na temperatura do óleo de 100 para 120 °C duplicou a constante da taxa de adsorção (k_1) pigmentos. ambos OS Resultados para semelhantes foram encontrados por Silva et

al. (2013), onde ambos os modelos de pseudoprimeira ordem e pseudo-segunda ordem foram adequados para descrever 0 comportamento cinético de branqueamento de óleo de palma. Tong et al. (2008) indicou o modelo de pseudo-segunda ordem foi capaz de descrever satisfatoriamente a adsorção de carotenóides e clorofilas por bentonita ativada. Outros modelos também são utilizados na literatura para adsorção de pigmentos em óleos (MONTE et al., 2015). A energia de ativação para adsorção de carotenóides foi de 36,25±3,68 kJ mol⁻¹ e para adsorção de clorofila foi de 42,21±2,83 kJ mol^{-1} . indicando que as clorofilas necessitaram um pouco mais de energia para serem adsorvidas.

3.3 Estudo de equilíbrio

As isotermas de equilíbrio foram obtidas em diferentes temperaturas (100, 110 e 120 °C) e diferentes concentrações de adsorventes, no óleo de farelo de arroz (0,5-2,5% m/m). As curvas para adsorção de carotenóides e clorofilas são apresentadas na Figura 4 e na Figura 5, respectivamente. A capacidade de adsorção aumentou com a elevação da temperatura, para ambos os pigmentos. Isto pode ser atribuído pela ativação de mais sítios de adsorção na terra ativada com o aumento da temperatura. Embora exista, o efeito da temperatura na adsorção é menos pronunciado do que o da concentração de adsorvente. O mesmo comportamento foi encontrado por Boki et al. (1992) no branqueamento de diferentes óleos vegetais.

A concentração inicial de carotenóides em OFA foi de 13,88±0,99 mg kg⁻¹ e de clorofilas foi de 14,10±0,70 mg kg⁻¹. Assim, pode-se notar que os pigmentos competem entre si no processo de adsorção (SABAH, 2007). As clorofilas demonstraram mais afinidade com a terra ativada do que os carotenóides, conforme indicado pelos valores da capacidade de adsorção. Um comportamento semelhante foi observado por

Adsorbato	Carotenóides			Clorofilas		
Temperatura (°C)	100	110	120	100	110	120
Pseudo- primeira ordem						
$q_1 (\mathrm{mg \ kg}^{-1})$	644±6	709±9	803±19	809±13	907±3	1073 ± 22
$k_I (\min^{-1})$	0,16±0,01	0,22±0,01	$0,29{\pm}0,01$	0,10±0,01	0,14±0,01	0,20±0,01
R^2	0,968	0,972	0,995	0,995	0,983	0,997
$R^2_{aju.}$	0,957	0,963	0,993	0,993	0,977	0,996
ARE (%)	7,30	6,30	2,52	3,03	4,69	1,90
Pseudo-segunda ordem						
$q_2 (\mathrm{mg \ kg}^{-1})$	714±10	770±12	848±21	919±15	1020±11	1160 ± 18
$k_2 \times 10^3$ (kg mg ⁻¹ min ⁻¹)	0,332±0,021	$0,743 \pm 0,025$	0,689±0,036	0,117±0,016	0,195±0,010	0,284±0,022
R^2	0,992	0,992	0,999	0,979	0,997	0,997
$R^2_{aju.}$	0,989	0,989	0,999	0,972	0,996	0,996
ARE (%)	3,59	3,31	0,49	6,02	1,86	2,13
Elovich						
$a \times 10^3 (\text{mg kg}^{-1}\text{min}^{-1})$	8,46±0,11	$10,22\pm0,56$	13,20±0,88	$4,78\pm0,40$	$5,39{\pm}0,20$	6,39±0,45
<i>b</i> (kg mg ⁻)	707±55	3952±102	87254±3256	215±13	607±15	3902±158
R^2	0,998	0,998	0,996	0,987	0,995	0,985
$R^2_{aju.}$	0,997	0,997	0,995	0,983	0,993	0,980
ARE (%)	1,35	1,65	2,46	5,86	2,71	4,70

Tabela 1 – Parâmetros cinéticos da adsorção de pigmentos de óleo de farelo de arroz.

Fonte: Autor (2015).

Figura 4 – Curvas de equilíbrio para adsorção de carotenóides de OFA

Fonte: Autor (2015).

Ribeiro et al. (2001) estudando a adsorção de pigmentos e produtos de oxidação em miscela de óleo de oliva com hexano. Na temperatura de 120 °C, o emprego de 1% (m/m) de terra ativada causou uma intensa diminuição no

teor de clorofilas, enquanto que a diminuição no teor de carotenóides foi menos pronunciada.

Fonte: Autor (2015).

As curvas experimentais de equilíbrio foram ajustadas aos modelos de Langmuir e

Freundlich, e os resultados são apresentados na Tabela 2. Ambos os modelos foram adequados para descrever o processo de adsorção de carotenóides, em diferentes temperaturas. Entretanto o modelo de Freundlich apresentou melhor ajuste aos dados experimentais da adsorção de clorofilas do que o modelo de Langmuir, evidenciado pelos altos valores de coeficiente de determinação $(R^2),$ coeficiente de determinação ajustado (R^2_{aju}) e pelos menores valores do erro médio relativo (EMR). Estes resultados estão coerentes com os apresentados na literatura (BAYRAK, 2008; LIU, HUANG e WANG, 2008), uma vez que o modelo de Langmuir assume que a superfície do adsorvente é homogênea, enquanto que o modelo de Freundlich se baseia na dependência da energia dos sítios de adsorção. O fator de heterogeneidade do modelo de Freundlich (1/n) apresentou valores entre 2 e 4 indicando alta afinidade entre o adsorbato e o adsorvente e mostrou que o processo de adsorção foi favorável. Os maiores valores da constante de Freundlich $(k_{\rm F})$ demonstraram que a adsorção foi mais temperatura 120 efetiva na de °C.

Tabela 2 – Parâmetros de equilíbrio pa	para a adsorção de pigmentos de óleo de farelo de arroz.
--	--

Adsorbato	Carotenóides			Clorofilas		
Temperatura (°C)	100	110	120	100	110	120
Modelo de Langmuir						
$q_m (\mathrm{mg \ kg^{-1}}_{\mathrm{ads}})$	1183±62	1164 ± 70	1245±72	1273±52	1503 ± 80	1838±95
K_L (kg _{oil} mg ⁻¹)	$0,184{\pm}0,008$	$0,254{\pm}0,007$	0,335±0,020	$3,030\pm0,042$	$2,208\pm0,095$	1,730±0,129
R^2	0,993	0,990	0,999	0,870	0,822	0,786
$R^2_{adj.}$	0,991	0,987	0,999	0,827	0,763	0,715
ARE (%)	1,59	1,73	0,76	13,62	21,45	28,67
Modelo de Freundlich						
$k_F ({ m mg \ kg^{-1}}_{ m ads}) ({ m mg \ kg^{-1}}_{ m oil})^{-1/n}$	258±8	319±6	394±11	771,3±11	915±12	1064 ± 20
$1/n_F$	$2,09\pm0,07$	$2,34\pm0,09$	2,49±0,05	3,12±0,02	$3,02{\pm}0,01$	2,85±0,03
R^2	0,981	0,998	0,982	0,974	0,981	0,965
$R^2_{adj.}$	0,975	0,997	0,976	0,965	0,974	0,953
ARE (%)	2,61	3,18	3,14	5,62	6,22	9,82

Fonte: Autor (2015).

3.3 Resultados termodinâmicos

Através dos parâmetros termodinâmicos, a adsorção de pigmentos de OFA foi avaliada pela constante de equilíbrio (k_e) , e pelas variações de energia livre de Gibbs (ΔG^0) , de entalpia (ΔH^0) e de entropia (ΔS^0) . Os resultados são mostrados na Tabela 3.

Pode ser observado na Tabela 3 que a constante de equilíbrio (k_e) aumenta com a elevação da temperatura, indicando a adsorção de pigmentos de OFA foi favorável com o aumento da temperatura. Os valores

negativos de ΔG^0 revelam que o processo foi espontâneo. Baseado nos valores positivos de ΔH^0 é possível inferir que o processo foi endotérmico. De acordo com Bairak (2003) valores de ΔH^0 acima de 20 kJ mol⁻¹ indicam que o processo é governado predominantemente por interações químicas.

Os valores positivos de ΔS^0 indicam que a desordem na interface sólido-líquido aumenta durante o processo de adsorção. O calor isostérico de adsorção (ΔH_a) para diferentes concentrações de adsorventes, ou seja, comparado em relação a mesma área superficial é apresentado na Figura 6.

Temperatura (°C)	<i>k</i> _e	$\Delta G^0 (\mathrm{kJ}\mathrm{mol}^{-1})^{\mathrm{a}}$	$\Delta H^0 (\mathrm{kJ}\mathrm{mol}^{-1})^{\mathrm{a}}$	$\Delta S^0 (\text{kJ mol}^{-1} \text{ K}^{-1})^a$
Carotenóides				
100	251±7	-17,13±0,21	25,42±4,44	0,11±0,01
110	309±7	$-18,25\pm0,09$		
120	381±17	-19,41±0,19		
Clorofilas				
100	772±12	-20,62±0,07	19,38±2,56	0,11±0,01
110	914±15	-21,71±0,11		
120	1061±22	-22,76±0,15		

Tabela 3 – Parâmetros termodinâmicos para a adsorção de pigmentos de óleo de farelo de arroz.

^a Média \pm desvio padrão (n=3).

Fonte: Autor (2015).

Figura 6 – Calor isostérico da adsorção de pigmentos em OFA

Fonte: Autor (2015).

É possível observar que os menores valores de ΔH_a são encontrados na menor concentração de adsorvente, para ambos os pigmentos. devido Isto ocorre ao carregamento da superfície do adsorvente. Aumentando a concentração do adsorvente haverá um ganho de área e os pigmentos serão adsorvidos preferencialmente nos sítios com maior energia. À medida que se diminui a concentração do adsorvente, os pigmentos são adsorvidos pelos sítios mais fracos resultando energeticamente valores em menores de ΔH_a (SILVA et al., 2013).

4 CONCLUSÃO

Neste trabalho foi avaliada a adsorção de carotenóides e clorofilas de óleo de farelo de arroz utilizando terra ativada como adsorvente. A caracterização do adsorvente que mesmo é revela 0 composto predominantemente por silicatos e apresenta elevada área superficial. As curvas cinéticas indicam que após 20 min de processo a taxa adsorção diminui consideravelmente de tendendo ao equilíbrio. Os modelos de pseudo-segunda ordem e pseudo-primeira ordem foram apropriados para representar a adsorcão de carotenóides e clorofilas, respectivamente. A temperatura de 120 °C aumentou a capacidade de adsorção de pigmentos de OFA e o teor de clorofilas reduziu drasticamente utilizando 1% (m/m) de adsorvente. O modelo de Freundlich foi o mais adequado para descrever as curvas de equilíbrio do branqueamento. Os parâmetros termodinâmicos revelaram que o processo foi endotérmico, favorável e espontâneo. O calor isostérico da adsorção indicou que а superfície da terra ativada é heterogênea.

REFERÊNCIAS

BAYRAK, Y. Adsorption Isotherms in Bleaching Hazelnut Oil. Journal of the American Oil Chemists' Society, v.80, p.1143-1146, 2003.

BOKI, K.; KUBO, M.; KAWASAKI, N.; MORI, H. Adsorption isotherms of pigments from alkali-refined vegetable oils with clay minerals. **Journal of the American Oil Chemists' Society**, v.69, p.372-378, 1992.

CHRISTIDIS, G. E.; SCOTT, P. W.; DUNHAM, A. C. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Agean, Greece. **Applied Clay Science**, v.12, p.329-347, 1997.

DIDI, M. A.; MAKHOUKHI, B.; AZZOUZ, A.; VILLEMIN, D. Colza oil bleaching through optimized acid activation of bentonite. A comparative study. **Applied Clay Science**, v.42, p.336-344, 2009.

KANAYA, Y.; DOI, T.; SASAKI, H.; FUJITA, A.; MATSUNO, S.; OKAMOTO, K. Rice bran extract prevents the elevation of plasma peroxylipid in KKAy diabetic mice. **Diabetes Research and Clinical Practice**, v. 66, p.157-160, 2004.

LIU, Y.; HUANG, J. WANG, X. Adsorption isotherms for bleaching soybean oil with activated attapulgite. **Journal of the American Oil Chemists' Society**, v.85, p.979-984, 2008.

MA, M-H.; LIN, C-I. Adsorption kinetics of β -carotene from soy oil using regenerated clay. **Separation and Purification Technology**, v.39, p.201-209, 2004.

MILONJIĆ, S. K. A consideration of the correct calculation of thermodynamic parameters of adsorption. Journal of Serbian Chemistry Society, v.72, p.1363-1367, 2007.

MONTE, M. L.; MONTE, M. L.; POHNDORF, R. S.; CREXI, V. T.; PINTO, L. A. A. Bleaching with blends of bleaching earth and activated carbon reduces color and oxidation products of carp oil. **European Journal of Lipid Science and Technology**, v.117, p. 829-836, 2015.

MPOB. Malaysian Palm Oil Board. **Determination of Carotene Content**. Method n^o. p2.6., p.194-197, 2005.

PESTANA-BAUER, V. R.; ZAMBIAZI, R. C.; MENDONÇA, C. R. B.; BENEITO-CAMBRA, M.; RAMIS-RAMOS, G. y-oryzanol and tocopherol contents in residues of rice bran oil refining. Food Chemistry, v.134, p.1479-1483, 2012.

RIBEIRO, M. H. L.; LOURENÇO, P. A. S.; MONTEIRO, J. P.; FERREIRA-DIAS, S. Kinetics of selective adsorption of impurities from a crude vegetable oil in hexane to activated earths and carbons. **European Food Resource Technology**, v.213, p.132-138, 2001.

SABAH, E. Decolorization of vegetable oils: Chlorophyll-*a* adsorption by acid-activated sepiolite. **Journal of Colloid Interface Science**, v.310, p1-7, 2007.

SILVA, M. A.; SANCHES, C.; AMANTE, E. R. Prevention of hydrolytic rancidity in rice bran. **Journal of Food Engineering**, v.75, p.487-491, 2006.

SILVA, S. M.; SAMPAIO, K. A.; CERIANI, R.; VERHÉ, R.; STEVENS, C.; DE GREYT, W.; MEIRELLES, A. J. A. Adsorption of carotenes and phosphorus from palm oil onto acid activated bleaching earth: Equilibrium, kinetics and thermodynamics. **Journal of Food Engineering**, v.118, p.341-349, 2013.

TONG, J.; WU, Z.; SUN, X.; XU, X.; LI, C. Adsorption Kinetics of β -Carotene and Chlorophyll onto Acid-activated. **Chinese Journal of Chemical Engineering**, v.16, p.270-276, 2008.