

ESTUDO DO EFEITO DE VARIÁVEIS OPERACIONAIS SOBRE A EFICIÊNCIA DE SEPARAÇÃO DE UMA PENEIRA VIBRATÓRIA EM ESCALA PILOTO

F. S. GUERREIRO^{1*}, V. P. BARBOSA¹, R. GEDRAITE¹, C. H. ATAÍDE¹

¹Universidade Federal de Uberlândia, Faculdade de Engenharia Química ^{*}e-mail: fernando_guerreiro18@yahoo.com.br

RESUMO

O peneiramento vibratório continua sendo uma das principais operações no que se refere à separação sólido-sólido e sólido-líquido. Embora seja um equipamento de simples concepção e operação, a descrição completa do funcionamento de uma unidade peneiramento pode ser difícil de ser predito, considerando que diversas variáveis operacionais podem afetar esta operação. Assim, o objetivo deste estudo foi a avaliação dos efeitos das variáveis de processo: proporção de partículas maiores que a abertura da tela na alimentação (partículas grossas); taxa média de alimentação e força-g imposta à peneira sobre a eficiência de separação de partículas grossas da operação de peneiramento em escala piloto, sendo que o material particulado a ser peneirado foi a rocha fosfática, de densidade 3,25 g/cm³ e com faixa de tamanho de partículas de 0,6 a 600 µm. Um planejamento composto central (PCC) foi criado para a avaliação dos efeitos lineares, quadráticos e de interação entre as variáveis de processo. Os resultados foram analisados estatisticamente e um ajuste não-linear foi realizado para a estimativa dos efeitos das variáveis sobre a eficiência. Verificou-se que a taxa média de alimentação não teve efeito significativo e a proporção de partículas grossas na alimentação e a força-g influenciaram positivamente o aumento da resposta avaliada. No ponto onde as variáveis assumem seus valores mais extremos, a eficiência máxima experimental foi de 94,93%.

1 INTRODUÇÃO

O peneiramento ainda é considerado uma das mais antigas operações unitárias de relevância para a separação e classificação nas indústrias e também é largamente utilizado como método de caracterização de distribuição de tamanho de partículas (LIU, 2009). Existem diversos objetivos para se realizar o peneiramento nas indústrias do setor de mineração, como por exemplo, classificação, para separar partículas de acordo com o tamanho; "scalping", para remoção de partículas mais grosseiras de uma corrente e desaguamento, para remoção do excesso de água de um material úmido (WILLS; MUNN, 2006). O peneiramento também é importante na perfuração de poços de petróleo, onde o objetivo desta operação é o de maximizar a recuperação de fluido de perfuração agregado aos cascalhos gerados pela broca e também maximizar a retenção deste material sólido sobre a tela da peneira (AADE, 1999).

O peneiramento é uma operação unitária de simples execução, entretanto a descrição matemática e entendimento detalhado dessa operação podem não ser triviais (STANDISH, 1985; LESCHONSKI, 1979). Essas dificuldades baseiam-se no fato que muitas variáveis afetam a operação de uma peneira vibratória típica, tais como: a tela de peneiramento (formato e tamanho das abertu-

ras), a amplitude e frequência de vibração, o ângulo de inclinação da cesta da peneira, densidade e distribuições de tamanho e forma das partículas a serem peneiradas e a quantidade material alimentado (JANSEN: de GLASTONBURY, 1967; FOWLER; LIM, 1959). Além disso, tem-se as diversas interacões entre essas variáveis, fato que concede a operação um grau de complexidade ainda maior. Todas essas características são utilizadas para entender porque ainda não foi desenvolvida uma metodologia geral e eficiente para predição da operação de peneiramento (LIU, 2009).

O efeito de algumas variáveis operacionais sobre o desempenho do peneiramento vibratório tem sido alvo de investigação de diversos autores. No peneiramento a seco, Fowler e Lim (1959) investigaram os efeitos da taxa de alimentação, frequência de vibração, ângulo de inclinação e tamanho de abertura da tela sobre a efetividade de uma peneira vibratória. Beeckmans et al. (1985) estudaram o comportamento do diâmetro de corte sobre a influência do ângulo de inclinação, taxa de alimentação, frequência e amplitude de vibração, abertura de tela e densidade dos sólidos utilizados nos experimentos. Standish et al. (1986) estudaram o efeito da alimentação, ângulo da cesta, rotação dos motovibradores, proporção de partículas de tamanho superior à abertura da tela, densidade e tamanho relativo de partículas sobre a eficiência de peneiramento com uma abordagem cinética. Trumic e Magdalinovic (2011) também realizaram uma análise cinética de peneiramento de sólidos minerais para avaliar a influência de fatores como dimensões da tela de peneiramento, distribuição de tamanho de partícula, formato dos materiais particulados, a massa inicial de sólidos e densidade.

Assim, o objetivo maior deste estudo foi avaliar os efeitos de algumas das variáveis de processo que afetam a desempenho de uma peneira vibratória em escala piloto. Foram consideradas a proporção de partículas maiores que a abertura da tela na alimentação, a taxa média de alimentação e a força-g da peneira sobre a eficiência de separação de partículas grossas na operação de peneiramento, sendo o material particulado a rocha fosfática, de densidade 3,25 g/cm³ e com faixa de tamanho de partículas de 0,6 a 600 µm.

2 MATERIAIS E MÉTODOS

2.1 Material Particulado para Peneiramento

Para a realização dos experimentos, o sólido utilizado foi a rocha fosfática. A escolha deste material particulado deu-se pela sua importância em nível regional e por ser matéria-prima para indústrias de fertilizantes fosfatados (VIEIRA, 2006). A densidade da rocha fosfática foi determinada por picnometria gás hélio a (picnômetro AccuPyc *Micromeritics* 1330) e vale 3,25 g/cm³. A Figura 1 apresenta a distribuição de tamanho de partículas referente ao material particulado, que foi determinada por difração a laser utilizando o analisador Mastersizer 2000. Observou-se que a rocha fosfática utilizada possui faixa de tamanho de 0,6 a 600 µm.

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

10

Particle size $d_p(\mu m)$

100

600

Figura 1 - Distribuição de tamanho de partículas da rocha fosfática

Fonte: Autor (2015)

2

0,6 1

2.2 Planejamento de Experimentos

Por permitir uma identificação e quantificação mais precisa dos efeitos das variáveis selecionados para este estudo, um planejamento composto central (PCC) foi criado e a técnica da superfície de resposta foi utilizada para obtenção dos pontos ótimos (MOGNON et al., 2015). Foram definidas como variáveis independentes:

- Proporção de partículas maiores que a abertura da tela (partículas grossas) na alimentação (X₁): antes do início dos experimentos, as partículas maiores que as aberturas da tela foram separadas das partículas menores. Ambas as populações de sólidos foram condicionadas em recipientes distintos.
- Taxa média de alimentação (X₂): a quantidade de sólidos finos e grossos referente a cada experimento foi medida, sendo que o tempo de operação foi fixado em 5 min. A alimentação foi realizada ao início da peneira de forma gradual até que toda a massa fosse esgotada dentro do tempo de operação do experimento.
- *Força-g imposta à peneira* (*X*₃): é definida como a razão entre a aceleração vibracional e a aceleração gravitacional da Terra, sendo dependente da frequência de vibração da peneira, que foi manipulada para alterar os valores desta variável quando necessário.

Considerando as três variáveis apresentadas, o planejamento compreende 17 experimentos, dos quais três são réplicas no ponto central. Esse número de réplicas foi definido de forma que o alfa de ortogonalidade, ou seja, os valores codificados dos pontos axiais $(+\alpha e -\alpha)$ fossem 1,353 e -1,353. A Tabela 1 apresenta o PCC, em sua forma codificada, para a realização dos experimentos deste trabalho.

Tabela	1	-	Matriz	z do	PO	CC I	utilizado	neste
trabalho, com três réplicas no ponto central.								

Experimento	X ₁	\mathbf{X}_{2}	X ₃
1	-1	-1	-1
2	-1	-1	+1
3	-1	+1	-1
4	-1	+1	+1
5	+1	-1	-1
6	+1	-1	+1
7	+1	+1	-1
8	+1	+1	+1
9	0	0	$-\alpha$
10	0	0	$+\alpha$
11	0	$-\alpha$	0
12	0	$+\alpha$	0
13	-α	0	0
14	$+\alpha$	0	0
15	0	0	0
16	0	0	0
17	0	0	0

Fonte: Autor (2015)

A Tabela 2 fornece os valores e a correspondência de cada variável com seu nível de codificação.

|--|

Nível	%Grosso	Taxa Alim.	Força-g	
-1,353	23	0,8	1,47	
-1	30	1,0	2,00	
0	50	1,6	3,50	
+1	70	2,2	5,00	
+1,353	77	2,4	5,53	
T	(0015)			

Fonte: Autor (2015).

2.3 Variável Resposta

Em um peneiramento ideal, todas as partículas maiores que as aberturas da tela estão presentes na corrente de material retido, resultando em uma eficiência de separação de 100%. Porém em um peneiramento real, as partículas grossas podem passar pela tela.

Este efeito pode ser explicado pela irregularidade da superfície de peneiramento, vazamento entre a tela e a cesta da peneira, irregularidades de formato das partículas ou à carga excessiva sobre a tela, que pode forçar essas partículas grossas a passar pelas aberturas (MOREIRA, 2003).

Assim, neste trabalho, a eficiência de separação de partículas grossas (η_G) foi determinada a partir da distribuição granulométrica das amostras coletadas na saída e na entrada da peneira. Foi calculada a partir da Equação (1)(LARSON, 2007):

$$\eta_{G}(\%) = 100 \frac{W_{R}}{W_{F}} \frac{\left(1 - Y_{R} \Big|_{d_{P} \to 130\,\mu m}\right)}{\left(1 - Y_{F} \Big|_{d_{P} \to 130\,\mu m}\right)}$$
(1)

em que W_R e W_F são as massas de sólido nas correntes de material retido e alimentação, respectivamente; Y_R e Y_F são as distribuições acumulativas de tamanho de partícula de amostras das correntes de material retido e da alimentação, respectivamente, até o tamanho d_P igual ao tamanho de abertura da tela (130 µm).

2.4 – Unidade Experimental

Um esquema da unidade experimental utilizada é apresentado na Figura 2.

Seus principais componentes são listados a seguir:

- 1) Tela de peneiramento de 130 μm de abertura;
- 2) Motovibradores;
- Acelerômetro piezelétrico para medir a vibração da peneira;
- 4) Placa de aquisição de dados da *National Instruments*;
- 5) Inversor de frequência para ajustar a rotação dos motovibradores.

Figura 2 - Unidade experimental para realização dos experimentos

Fonte: Autor (2015)

2.5 Peneira Vibratória

A peneira vibratória utilizada nos experimentos possui as seguintes características:

- Dimensões de 1,65 m de comprimento; 0,81 m de largura e 1,00 m de altura;
- Dois motovibradores de 0,75 cv que impõem movimentação linear ao sistema de peneiramento;
- Quadro para montagem da tela de 1,0 m x 0,4 m de área de peneiramento.

Optou-se por inclinar a peneira de maneira descendente visando proporcionar um melhor transporte do sólido retido (HOBEROCK, 1981). O valor da inclinação da peneira em relação ao piso foi estimado em 2,25°.

2.6 Metodologia Experimental

A execução dos experimentos seguiu a seguinte metodologia:

- Montagem da tela e preparação do material sólido a ser alimentado;
- Início do peneiramento com o descarregamento do sólido sobre a peneira. A partir desse instante contabilizava-se o tempo de operação;
- Ajuste da força-g através de um algoritmo de controle proporcional criado no

software Labview que recebia, através de uma placa de aquisição de dados, o sinal de corrente gerado pelo acelerômetro e manipulava a rotação dos motovibradores pelo inversor de frequência. O controle da força-g foi necessário, já que seu valor diminui à medida que a suspensão vai sendo alimentada à peneira (EL DORRY, 2010). Na Figura 3 é exemplificada a aquisição de dados a partir das informações obtidas do experimento 1;

- Término da operação quando esgotada toda a alimentação no tempo de 5 minutos e a vibração era interrompida. O material retido era coletado em um tanque e devidamente pesado, e o material passante pelas aberturas da tela era descarregado em outro tanque de coleta;
- Coleta de amostras dos sólidos retidos e da alimentação para análise de distribuição de tamanho de partícula.

Figura 3 - Aquisição de dados para controle da força-g no experimento 1.

Fonte: Autor (2015)

2.7 Tratamento de Dados

Os resultados obtidos experimentalmente foram sujeitos à análise de regressão múltipla para quantificação dos efeitos lineares das variáveis, bem como as interações e as contribuições quadráticas sobre as respostas, permitindo o ajuste de um modelo de 2ª ordem descrito pela Equação (2).

$$\eta(\%) = \beta_0 + \sum_{i=1}^k \beta_i X_i + \sum_{i=1}^k \beta_{ii} X_i^2 + \sum_{i=1}^k \sum_{j=1}^k \beta_{ij} X_i X_j$$
(2)

Os parâmetros não significativos foram eliminados através do teste t de *Student*, considerando um nível de 10% de significância. Todas as análises estatísticas foram conduzidas com o emprego do *software* Statistica 7.1.

3 RESULTADOS E DISCUSSÕES

A Tabela 3 mostra os resultados para cada experimento.

Tabela 3 - Resultados experimentais da eficiênciade separação para cada experimento.

Experimento	$\eta_G(\%)$	Experimento	$\eta_G(\%)$
1	75,88	10	89,35
2	73,03	11	83,03
3	75,29	12	83,16
4	76,02	13	64,68
5	90,73	14	92,36
6	92,43	15	82,45
7	90,66	16	81,72
8	92,97	17	83,86
9	81,79		

Fonte: Autor (2015)

A partir da Tabela 3 é possível constatar que os experimentos caracterizados por proporções de partículas grossas na alimentação maiores que 70% (5, 6, 7, 8 e 14) conduziram aos maiores valores de eficiência ($\eta_G > 90\%$), indicando a forte influência desta variável na resposta analisada. Uma possível explicação para este resultado é que, quanto menor a quantidade de partículas finas na alimentação, menor a chance de elas ficarem retidas na peneira.

A Equação (3) apresenta os parâmetros significativos do ajuste da eficiência de separação de partículas grossas. O quadrado do

coeficiente de correlação R^2 para este ajuste foi de 0,96.

$$\eta_G(\%) = 82,78 + 8,92X_1 - 1,83X_1^2 + +1,04X_3 + 2,02X_3^2$$
(3)

Analisando a Equação (3), nota-se que a eficiência não é afetada significativamente pela taxa de alimentação (X_2). Uma vez que o desejado é alcançar o maior valor para esta resposta na região experimental, observa-se que o termo linear de proporção de partículas grossas (X_1) foi o mais significativo, além de ter contribuído para o aumento da eficiência. Os termos significativos associados à força-g (X_3) também contribuíram para o aumento da resposta.

Na Figura 4 são apresentadas a superfície de resposta e a sua projeção que representam o comportamento da eficiência de separação de partículas grossas em relação às variáveis independentes. Foi observado que a região de maior eficiência dentro da região experimental foi aquela correspondente aos maiores níveis de X_1 e X_3 .

Em conjunto com a Equação (3), o ponto ótimo foi aquele correspondente ao maior nível das variáveis (+ α), resultando em uma eficiência calculada de 96,59%. Porém o PCC proposto não contempla o experimento com o maior nível para todas as variáveis. Assim, fez-se necessária a validação experimental deste ponto adicional, sendo obtido o valor de 94,93%, sendo assim, um erro de ajuste relativo de 1,75%, o que pode ser considerado satisfatório devido ao R² calculado pela regressão. **Figura 4** - Superfície de resposta e sua projeção correspondentes à eficiência de separação de partículas grossas.

Superfície de resposta ($X_2 = 0$)

4 CONCLUSÕES

A partir dos dados obtidos neste trabalho, foi possível concluir que a taxa média de alimentação não teve efeito sobre a eficiência de separação de partículas grossas e a proporção de partículas grossas na alimentação e a força-g influenciaram positivamente o aumento da resposta avaliada. O ponto ótimo alcançado através da regressão e da superfície de resposta foi aquele correspondente ao nível mais extremo de todas as variáveis, sendo validado experimentalmente como 94,93%.

REFERÊNCIAS

AMERICANASSOCIATIONOFDRILLINGENGINEERS(AADE).ShaleShakersandDrillingFluidSystems.Houston:Gulf Publishing Company, 1999.

BEECKMANS, J. M., GERMAIN, E. R., MCINTYRE, A. **Performance Characteris**tics of a **Probability Screening Machine**. *Powder Technology*, p. 249-256, 1985.

EL DORRY, K. Effect of Constant-G Control on Shale Shaker Performance. AADE Fluids Conference and Exhibition. Houston, Texas, 2010

FOWLER, R. T., LIM, S. C. The Influence of Various Factors upon the Effectiveness of Separation of a Finely Divided Solid by a Vibrating Screen. **Chemical Engineering Science**, 1959.

HOBEROCK, L. L. Screen Selection is Key to Shale-Shaker Operation. **Oil & Gas Journal**, 130–132, p. 137–141, 1981.

JANSEN, M. L., GLASTONBURY, J. R. (1967). The Size Separation of Particles by Screening. **Powder Technology**, p. 334-343.

LARSON, R. T. API RP 13C D100 Values, Split Curves, and Separation Efficiency. Houston, Texas: AADE National Technical Conference and Exhibition, 2007.

LESCHONSKI, K. Sieve analysis, the Cinderella of particle size analysis methods? **Powder Technology**, p. 115-124, 1979.

LIU, K. Some Factors Affecting Sieving Performance and Efficiency. **Powder Technology**, 2009.

MOGNON, J. L.; SILVA, J. M.; BICALHO, I. C.; ATAÍDE, C. H.; DUARTE, C. R.

Modular Mini-Hydrocyclone Desilter Type of 30 mm: An Experimental and Optimization Study. Journal of Petroleum Science and Engineering, 129, p. 145-152, 2015.

STANDISH, N. The Kinetics of Batch Sieving. **Powder Technology**, p. 57-67, 1985.

STANDISH, N., BHARADWAJ, A. K., HARIRI-AKBARI, G. A Study of the Effect of Operating Variables on the Efficiency of a Vibrating Screen. **Powder Technology**, 48, p. 161-172, 1986.

TRUMIC, M., MAGDALINOVIC, N. New Model of Screening Kinectics. **Minerals Engineering**, p. 42-49, 2011.

VIEIRA, L. G. **Otimização dos processos de separação em hidrociclones filtrantes**. Tese (doutorado). Uberlândia, MG, Brasil: Universidade Federal de Uberlândia, 2006.

WILLS, B. A., MUNN, T. J. Will's Mineral Processing Technology: An Introduction tothe Practical Aspects of Ore Treatment and Mineral Recovery (7^a ed.). Elsevier Science & Technology Books, 2006.