

ESTUDO DA PURIFICAÇÃO DE BIOGÁS PARA USO ENERGÉTICO PELA ABSORÇÃO DE H₂S E CO₂

D. C. SCHIAVON MAIA^{1*}, R. R. NIKLEVICZ², E. EYNG², L. M. FRARE², M. L. GIMENES¹ e N. C. PEREIRA¹

¹Universidade Estadual de Maringá, Departamento de Engenharia Química ²Universidade Tecnológica Federal do Paraná, Departamento de Engenharia Ambiental ^{*}e-mail: djeine.cr@ig.com.br

RESUMO

O biogás contém pequenas quantidades de sulfeto de hidrogênio (H_2S), gás altamente tóxico e corrosivo. A combustão do H2S junto com o biogás resulta na produção de dióxido de enxofre (SO₂) que causa severos problemas ambientais. Portanto, a dessulfurização deste gás é um pré-requisito para seu uso como fonte de energia. Além disto, para a utilização energética, o dióxido de carbono (CO2) presente no biogás é considerado como inerte. O processo de purificação utilizado no presente trabalho é baseado na absorção química do H₂S por meio de uma reação de oxirredução promovida por Fe/EDTA em solução aquosa. Neste processo o enxofre obtido a partir do H₂S é oxidado à sua forma elementar mais estável, de fácil remoção. Além disto, promove-se a regeneração do Fe/EDTA em condições de temperatura e pressão ambientes pela a injeção de ar atmosférico. Embora o Fe/EDTA seja seletivo ao H₂S, ocorre também a absorção física de dióxido de carbono na solução comercial por essa ser aquosa. Para avaliar a influência da remoção de H₂S e CO₂ do biogás foram variadas a concentração de Fe/EDTA na solução e a relação entre a vazão de líquido e gás (L/G) por meio de um planejamento experimental utilizando a metodologia do Delineamento Composto Central Rotacional (DCCR). A partir da análise dos resultados obtidos, podese comprovar que a eficiência de remoção de H₂S é influenciada, significativamente pelas duas variáveis investigadas e a remoção do CO₂ é unicamente dependente da relação L/G.

1 INTRODUÇÃO

A grande participação das fontes não renováveis na oferta mundial de energia coloca a sociedade diante de um desafio: a busca por fontes alternativas. Isso não pode demorar a ocorrer, sob o risco de o mundo, literalmente, entrar em colapso, pelo menos se for mantida a atual matriz energética, na qual o petróleo tem uma importância vital (MAGALHÃES et al., 2004).

O biogás é produzido por via anaeróbia da digestão de materiais orgânicos, tais como

biomassa, lixo biodegradável, esgotos ou resíduos sólidos urbanos (SIGOT et al., 2014). Devido ao seu alto teor de metano, o biogás pode ser utilizado como um combustível para gerar eletricidade (KÁRÁSZOVÁ et al., 2012).

Frequentemente, as plantas de biogás são capazes de atingir sustentabilidade energética, utilizando o gás que produzem em suas próprias instalações (NUTIU, 2014).

O biogás consiste, principalmente, de CH₄ e CO₂. Outros componentes em menores quantidades podem estar presentes no biogás,

como o vapor de água (H2O), sulfeto de hidrogênio (H₂S), amônia (NH₃), oxigênio (O₂), monóxido de carbono (CO) e nitrogênio (N₂) (RYCKEBOSCH, DROUILLON VERVAEREN, 2011). O CO₂ atua como um diluente no biogás (HINTON e STONE, 2014) e a remoção extra, mesmo que parcial, do dióxido de carbono aumenta. significativamente, seu poder calorífico. A presença do H₂S é extremamente indesejável devido seu efeito corrosivo ao nos queimadores e à formação de SO₂ decorrente do processo de combustão que causa severos problemas ambientais, como a chuva ácida. Portanto, a dessulfurização do biogás é um pré-requisito para o seu uso como fonte de energia (MAAT, HOGENDOORNB e **VERSTEEG**, 2005).

A purificação do biogás tem atraído uma grande atenção da comunidade científica (KÁRÁSZOVÁ et al., 2012). O H₂S pode ser removido de correntes gasosas pelo contato com soluções aquosas de Fe/EDTA. Segundo Wubs e Beenackers (1993), a absorção de H₂S é representada pelas Equações 1 e 2.

$$H_2 S_{(g)} \to H_2 S_{(aq)} \tag{1}$$

$$H_{2}S_{(aq)} + 2Fe^{+3} / EDTA_{(aq)} \rightarrow S \downarrow +2H^{+}$$
$$+ 2Fe^{+2} / EDTA_{(aq)}$$
(2)

O composto $Fe^{+2}/EDTA$ é regenerado para a forma férrica pela oxidação da solução com o oxigênio, conforme as Equações 3 e 4.

$$O_{2(g)} \to O_{2(aq)} \tag{3}$$

$$O_{2(aq)} + 4Fe^{+2} / EDTA_{(aq)} + 2H_2O \rightarrow$$

$$2Fe^{+3} / EDTA_{(aq)} + 2OH^{-}_{(aq)}$$
(4)

Xiao et al. (2014), estudou a remoção de CO_2 a partir do biogás pelo sistema de lavagem com água. Foram analisados vários

parâmetros, incluindo a razão líquido/gás, a pressão, a temperatura e o teor de CO₂. Os resultados indicam que a taxa de remoção de CO₂ aumentou de 34,6% a 94,2% quando a razão líquido/gás aumentou de 0,14 para 0,50. A taxa de remoção de CO₂ pode chegar de 24,4% a 83,2% quando o teor de CO₂ no gás era entre 25% e 45%. Após a absorção, o menor teor de dióxido de carbono foi de 2,6% em 1,2 MPa com vazões de 400 L.h⁻¹ para o gás e 200 L.h⁻¹ para a água.

Schiavon Maia et al. (2015), avaliaram a purificação do biogás em batelada com um volume de 250 mL de Fe/EDTA, sintetizado laboratório. Foram utilizadas em concentrações de 0,02 e 0,04 mol.L⁻¹ na coluna de absorção química com a passagem de 250 mL.min⁻¹ de biogás. Os resultados de remoção de H₂S indicaram que a concentração da solução de Fe/EDTA exerce grande influência sobre a atividade catalítica. Foi possível remover completamente o H₂S do biogás em regime permanente utilizando uma razão L/G de 0,46, com um volume fixo de 250 mL de Fe/EDTA de concentração igual a 0,04 mol.L⁻¹ na coluna de absorção química.

2 MATERIAIS E MÉTODOS

Segundo Horikawa et al. (2004), a solução de Fe/EDTA deve ser sintetizada em atmosfera inerte. Conforme descrito por Schiavon Maia et al. (2015), o tempo total para síntese desta solução pode levar, em média, até 10 horas.

Tendo em vista a grande dificuldade de síntese do Fe/EDTA em laboratório, avaliouse neste trabalho, a utilização de um complexo comercial que contém Fe/EDTA para a absorção química de H_2S do biogás.

Nos ensaios realizados foi utilizado um biogás sintético, cuja composição mol/mol era igual a 2,2% de H₂S, 0,3% de O₂, 14% de CO₂, 2,4% de N₂ e 81,1% de CH₄. A fim de avaliar a remoção do H₂S e do CO₂ do biogás

foram realizados ensaios variando-se a concentração da solução de Fe/EDTA bem como a razão entre a vazão de líquido e gás (L/G) utilizando um sistema como o ilustrado na Figura 1.

Figura 1 – Diagrama da unidade experimental utilizada na purificação de biogás.

Os ensaios foram realizados à temperatura ambiente. A pressão na linha do biogás foi de 34,5 kPa, utilizando uma vazão fixa de biogás de 341 mL.min⁻¹. O volume de líquido em cada coluna, de absorção química do H₂S e de regeneração da solução que contém Fe/EDTA, foi mantido constante em 250 mL para todos os experimentos. A composição do biogás foi medida por meio de Cromatografia Gasosa com Detector de Condutividade Térmica (GC/TCD) utilizando coluna capilar Plot U, com o auxílio do programa ChromQuest 4.1. Deste modo foi determinada a variação das composições de H₂S e CO₂ nas amostras de biogás na alimentação e após a etapa de purificação.

O poder calorífico do biogás foi estimado segundo a metodologia descrita por Magalhães et al. (2004), levando em consideração que ele depende da porcentagem de metano existente no biogás e que o metano puro apresenta um poder calorífico de 9,9 kWh.m⁻³.

As variáveis estudadas no DCCR, em regime permanente, foram a concentração da solução comercial de Fe/EDTA e a razão L/G,

nas quais os níveis utilizados são apresentados na Tabela 1.

Tabela	1	-	Níveis	das	vari	áveis	ava	aliadas	no
planejar	ner	nto	DCC	CR	de	acor	do	com	a
concent	rac	ão	de Fe/E	DT A	A (C)	e razâ	ío L	/G.	

Níveis das Variáveis	C (mol.L ⁻¹)	L/G
-1,41	0,1000	0,73
-1	0,1145	0,81
0	0,1500	1,00
+1	0,1855	1,19
+1,41	0,2000	1,27

Na Tabela 2 é apresentada a matriz do planejamento experimental DCCR em termos de suas variáveis codificadas. As variáveis x1 e x2 representam a codificação de C e L/G, respectivamente. As codificações foram realizadas utilizando-se as Equações 5 e 6.

$$x1 = (C - 0.15)/0.0355$$
 (5)

$$x2 = (L/G - 1)/0,1915)$$
(6)

 Tabela 2 - Matriz do planejamento DCCR.

Ensaios		x1	x2
1		+1	+1
2	Dontos fotoniais	+1	-1
3	Politos fatoriais	-1	+1
4		-1	-1
5	Pontos centrais	0	0
6		0	0
7		0	0
8		0	+1,41
9	Pontos axiais	0	-1,41
10		+1,41	0
11		-1,41	0

3 RESULTADOS E DISCUSSÃO

Na Tabela 3 são apresentadas as médias das eficiências de remoção de H₂S e CO₂ para as condições estabelecidas no planejamento DCCR.

Ensaios	Eficiência de Remocão de	Eficiência de Remocão de	
	H ₂ S (%)	CO ₂ (%)	
1	64,90	28,06	
2	54,32	18,69	
3	59,68	26,88	
4	46,11	17,34	
5	64,90	26,18	
6	62,41	24,85	
7	60,88	28,39	
8	71,02	30,43	
9	55,95	16,80	
10	75,47	30,28	
11	58,63	22,44	

Tabela 3 – Resultados para a eficiência de remoção de H_2S e CO_2

3.1 Resultados para remoção de H₂S

Na Figura 2 é apresentado o Gráfico de Pareto relativo à remoção do H_2S .

Figura 2 – Gráfico de Pareto para a Remoção de H_2S .

A partir da Figura 2 é possível verificar que tanto a concentração de Fe/EDTA (x1) quanto a razão L/G (x2) foram significativas, na remoção de H₂S do biogás, ao nível de 5%. Estes parâmetros têm influência positiva sobre a purificação de biogás, indicando que caso haja um aumento no valor de L/G e da concentração de Fe/EDTA a eficiência de remoção de H_2S tende a aumentar, confirmando os maiores resultados obtidos nos ensaios 8 e 10 apresentados na Tabela 3.

Na Tabela 4 são apresentados os resultados da Análise de Variância (ANOVA), para a remoção de H₂S do biogás. Embora o modelo matemático, que representa os resultados de remoção seja válido (p < 0,05), o coeficiente de correlação (\mathbb{R}^2) apresentou um baixo valor (67,42%), não sendo, entretanto, adequado para a predição de resultados. A equação 7 representa o modelo matemático obtido.

 $\% \text{RemH2S} = 61,30 + 4,66.x1 + 5,68.x2 \quad (7)$

A ausência de termos quadráticos significativos nesta equação indica que a região ótima encontra-se em um intervalo que não foi contemplado nestes experimentos.

Tabela 4 – Análise de	Variância para	a o Planejamento	DCCR na Remo	ção de H ₂ S do	Biogás
				s =	

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio	Fcalc	p-valor
Regressão	431,8	2	215,9	8,3	0,01127
Resíduos	208,7	8	26,1		
Total	640,4	10			

Na Figura 3 são apresentadas as curvas de contorno para a eficiência de remoção de H_2S .

Figura 3 – Curvas de contorno para eficiência de remoção de H_2S em função das variáveis x1 e x2.

A partir da análise das curvas de contorno, geradas a partir do modelo matemático observadas na Figura 3, é possível concluir que para valores elevados da razão L/G e de concentração de Fe/EDTA, maiores eficiências de remoção de H₂S são obtidas. Portanto, para alcançar uma remoção superior a 70%, deve-se utilizar valores maiores do que 0,18 mol.L⁻¹ e 1,19 para C e L/G, respectivamente.

Na Figura 4 é possível observar a eficiência de remoção de H_2S ao longo do tempo para os ensaios experimentais 1, 2, 3 e 4 com a solução comercial que contém Fe/EDTA.

Figura 4 - Eficiência de remoção de H₂S com a solução comercial para os ensaios 1, 2, 3 e 4.

De acordo com a Figura 4, o ensaio 1 com maior L/G e maior concentração de Fe/EDTA (0,1855 mol/L e L/G 1,19) apresentou maior eficiência de remoção de H₂S ao longo do tempo, chegando a 71% no tempo de 55 min, confirmando o previsto nas curvas de contorno. De um modo geral, houve um aumento na eficiência com o tempo para os quatro ensaios, possivelmente devido à formação de partículas de enxofre no meio reacional, aumentando a resistência à passagem de biogás pela solução comercial, havendo maior contato entre gás e líquido, como se fosse uma coluna recheada.

As eficiências de remoção de H_2S , com a solução comercial que contém Fe/EDTA, para os ensaios 5, 6 e 7 estão apresentadas na Figura 5.

Os ensaios 5, 6 e 7, ambos na concentração de 0,1500 mol/L de Fe/EDTA e L/G 1,00 (ponto central do DCCR) apresentaram uma eficiência média de absorção de H_2S de 63%.

Na Figura 6 estão apresentadas as eficiências de remoção de H_2S com a solução comercial para os ensaios 8, 9, 10 e 11.

Figura 6 - Eficiência de remoção de H_2S com a solução comercial para os ensaios 8, 9, 10 e 11.

Comparando os ensaios 8 e 9, com mesma concentração de Fe/EDTA, a eficiência de absorção de H₂S do ensaio 8, com maior L/G, foi superior ao ensaio 9, conforme mostra a Figura 6. O ensaio 10, com o dobro da concentração do ensaio 11 e mesmo L/G, apresentou em média 75% de eficiência de absorção de H₂S ao longo do tempo, enquanto o ensaio 11 apresentou em média 59%.

3.2 Resultados para a remoção de CO₂

Na Figura 7 é apresentado o Gráfico de Pareto relativo à remoção do CO₂.

Figura 7 – Gráfico de Pareto para a remoção de CO₂.

De acordo com o Gráfico de Pareto, apresentado na Figura 7, a razão L/G (x2) é a única variável significativa ao nível de 5% que possui influência na absorção do CO₂ do biogás. variável С А (x1) não foi significativa, ou seja, 0 aumento da concentração de Fe/EDTA não gera um aumento da eficiência de remoção de CO2. Desta forma, pode-se trabalhar em baixos valores de C durante os experimentos.

Portanto, se houver um aumento no valor de L/G, a eficiência de remoção de CO_2 tende a aumentar, como mostra o resultado obtido no ensaio 8 da Tabela 3.

Na Figura 8 são apresentadas as curvas de contorno para eficiência de remoção de CO₂.

Figura 8 – Curvas de contorno para eficiência de remoção de CO_2 em função das variáveis x1 e x2.

Observa-se nas curvas de contorno da Figura 8 que, nos intervalos investigados, as maiores eficiências de remoção ocorreram para níveis altos de L/G sem influência significativa da concentração de Fe/EDTA.

Na Tabela 5 são apresentados os resultados da análise de variância do modelo matemático para a remoção de CO_2 do biogás. O modelo matemático, que representa os resultados de remoção, mostrou-se válido (p < 0,05), com um coeficiente de correlação de 71,91%. A equação 8 representa o modelo matemático obtido.

$$%$$
RemCO2 = 24,54 + 4,77.x2 (8)

Tabela 5 – Análise de Variância Obtida para o Planejamento DCCR na Remoção de CO₂ do Biogás.

Fonte de Variação	Soma dos Quadrados	Graus de Liberdade	Quadrado Médio	Fcalc	p-valor
Regressão	182,3	1	182,3	23,0	0,00097
Resíduos	71,2	9	7,9		
Total	253,5	10			

Na Figura 9 pode-se observar a eficiência de remoção de CO_2 em função de C e L/G para os ensaios 1, 2, 3 e 4.

Figura 9 - Eficiência de remoção de CO₂ com a solução comercial para os ensaios 1, 2, 3 e 4.

De acordo com o observado na Figura 9, os ensaios 1 e 3, com L/G (1,19) maior que os ensaios 2 e 4, apresentaram maior eficiência de absorção de CO_2 ao longo do tempo, porém a concentração da solução não apresentou significância na retirada do CO_2 , conforme previsto nas curvas de contorno da Figura 8.

Na Figura 10 tem-se os resultados para as eficiências de remoção de CO_2 com a solução comercial para os ensaios 5, 6 e 7. **Figura 10** - Eficiência de remoção de CO₂ com a solução comercial para os ensaios 5, 6 e 7.

De acordo com a Figura 10, os ensaios 5, 6 e 7, ambos na concentração de 0,1500 mol/L de Fe/EDTA e L/G 1,00, apresentaram uma eficiência média de absorção de CO₂ de 26%. Os ensaios 8, 9, 10 e 11 estão apresentados na Figura 11.

Figura 11 - Eficiência de remoção de CO₂ com a solução comercial para os ensaios 8, 9, 10 e 11.

Os ensaios 8 e 10 foram mais eficientes na absorção física de CO₂, sendo que o ensaio

8 possuía maior L/G (1,27) e o ensaio 10 maior concentração de Fe/EDTA (2,0000 mol/L).

Como a composição de entrada na unidade experimental era de 14% mol/mol de CO_2 , foi possível alcançar uma eficiência máxima de absorção de CO_2 de 30,43% (ensaio 8) do biogás de entrada na unidade experimental. Isso configura um acréscimo de 5,25% no poder calorífico do biogás.

4 CONCLUSÕES

A solução comercial que contém Fe/EDTA apresentou boa viabilidade para a remoção de H₂S do biogás. Nos intervalos investigados, os valores elevados da razão L/G e de concentração de Fe/EDTA levam a maiores eficiências de remoção de H₂S. Para o CO₂, a melhor remoção ocorreu em níveis altos de L/G sem influência significativa da concentração de Fe/EDTA. O aumento do poder calorífico do biogás, pela remoção do CO₂, foi de 8,03 kWh/m³ para 8,45 kWh/m³, o que representa um ganho de 5,25%.

NOMENCLATURA

С	Concentração de	mol/L
	Fe/EDTA na solução	
L/G	Razão entre a vazão	-
	de solução de	
	Fe/EDTA e a vazão	
	de biogás	
x1	Variável codificada	-
	para a concentração	
	de Fe/EDTA	
x2	Variável codificada	-
	para a razão L/G	
%RemH2S	Percentagem de	-
	remoção de H ₂ S	
%RemCO2	Percentagem de	-
	remoção de CO ₂	

REFERÊNCIAS

HINTON, N.; STONE, R. Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. **Fuel**, v. 116, Pg 743-750, 2014.

HORIKAWA, M.S.; ROSSI, F.; GIMENES, M.L.; COSTA, C.M.M.; SILVA, M.G.C. Chemical Absorption of H₂S for Biogas Purification. **Brazilian Journal of Chemical Engineering**, v. 21, v. 03, pp. 415 - 422, 2004.

KÁRÁSZOVÁ, M.; VEJRAŽKA, J.; VESELÝ, V.; FRIESS, K.; RANDOVÁ, A.; HEJTMÁNEK, V.; BRABEC, L.; IZÁK, P. A water-swollen thin film composite membrane for effective upgrading of raw biogas by methane, **Separation and Purification Technology**, v. 89, 22, p. 212-216, 2012.

MAAT, H. ter; HOGENDOORNB, J. A.; VERSTEEG, G. F. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent Part I. The absorption of hydrogen sulfide in metal sulfate solutions, **Separation and Purification Technology**, 43. 183–197, 2005.

MAGALHÃES, E. A.; SOUZA, S. N. M.; AFONSO, A. D. L.; RICIERI, R. P. Confecção e avaliação de um sistema de remoção do CO2 contido no biogás. Acta Scientiarum Technology, v. 26, n. 1, p. 11-19, 2004.

NUTIU, E. Anaerobic Purification Installation with Production of Biogas and Liquid Fertilizers, **Procedia Technology**, v. 12, p. 632-636, 2014.

RYCKEBOSCH, E.; DROUILLON, M.; VERVAEREN, H. Techniques for transformation of biogas to biomethane,

Biomass and Bioenergy, Volume 35, Issue 5, May 2011, Pages 1633-1645, 2011.

SCHIAVON MAIA, D. C.; LENZI, G. G.; ARROYO, P. A.; FRARE, L. M.; GIMENES, M. L.; PEREIRA, N. C. Desenvolvimento de um Sistema para Purificação de Biogás Utilizando Fe/EDTA como Absorvente. **Engevista**, v. 17, n. 2, p. 219-231, 2015.

SIGOT, L.; DUCOM, G.; BENADDA, B.; LABOURÉ, C. Adsorption of octamethylcyclotetrasiloxane on silica gel for biogas purification, **Fuel**, v. 135, p. 205-209, 2014.

XIAO, Y.; YUAN, H.; PANG, Y.; CHEN, S.; ZHU, B.; ZOU, D.; MA, J.; YU, L.; LI, X. CO₂ Removal from Biogas by Water Washing System, **Chinese Journal of Chemical Engineering**, v. 22, Issue 8, p. 950-953, 2014.

WUBS, H. J.; BEENACKERS, A. A. C. M. Kinetics of the Oxidation of Ferrous Chelates of EDTA and HEDTA in Aqueous Solution. **Ind. Eng. Chem. Res.**, 32, p. 2580 – 2594, 1993.