ALTERAÇÕES DAS PARTÍCULAS DE AMIDO DE MILHO AGLOMERADAS COM ALGINATO DE CÁLCIO PELO MÉTODO "DRIPPING"

G. FELTRE,^{1,2*}, F. C. MENEGALLI², G. C. DACANAL¹

¹Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Dep. Engenharia de Alimentos ²Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos, Dep. Engenharia de Alimentos

*e-mail: gabifeltre@hotmail.com

RESUMO

O amido de milho é uma importante fonte de energia para os seres humanos e é muito utilizado em preparos de diversos pratos. O amido nativo possui estrutura semicristalina que sofre degradação em elevadas temperaturas e com presença de água. Com o objetivo de alterar a microestrutura do amido, principalmente quanto à temperatura de gelatinização, foi realizada a aglomeração de partículas utilizando-se alginato de sódio e cloreto de cálcio, pelo método de gotejamento, ou dripping. As partículas produzidas foram analisadas por DSC, FT-IR, DRX e MEV. Foram obtidas partículas com diferentes composições, mais especificamente, em frações de (0, 50, 60, 70, 80 e 90)% de amido. As modificações ocorreram à medida em que se aumentou a quantidade de alginato de sódio da partícula. As partículas com menores frações de amido, ou seja, maiores conteúdos de alginato de cálcio, apresentaram pequenas alterações em sua microestrutura e cristalinidade, mas tiveram picos endotérmicos em temperaturas mais elevadas.

1 INTRODUÇÃO

O amido é a principal fonte de energia ao redor do mundo (SINGH et al., 2010). Seus grânulos possuem natureza semicristalina e a fração de amilose e amilopectina presentes variam de acordo com a espécie botânica, determinando seu grau de cristalinidade (SINGH et al., 2003).

Os grânulos de amido podem ser classificados quanto a sua digestibilidade. O amido de rápida digestão é digerido após 20 minutos de sua ingestão e fornece energia rapidamente ao organismo. O amido de lenta digestão apresenta tempo de digestão entre 20 e 120 minutos após a sua ingestão, fornecendo energia lentamente e mantendo a glicose no sangue. Sua digestão ocorre no intestino delgado. O amido resistente é digerido após 120 minutos de sua ingestão e não ocorre no intestino delgado; sua ação ocorre no cólon (LEHMANN; ROBIN, 2007). O amido resistente destaca-se por não ser digerido pelas enzimas do corpo humano (SAJILATA et al., 2006) atuando semelhante a uma fibra solúvel no cólon humano (HARALAMPU, 2000).

A aglomeração consiste na modificação de tamanho de partículas, decorrente da união das mesmas na presença de um líquido ligante, para a formação de uma estrutura maior chamada de agregado poroso, que se trata de uma partícula maior (DACANAL; MENEGALLI, 2009). O processo de aglomeração de partículas é muito utilizado em alimentos particulados para alteração de suas propriedades. como fluidez e solubilidade (TURCHIULI et al., 2005).

Para a encapsulação de compostos ativos, como enzimas e drogas, dentro de uma matriz, um método muito utilizado é o "dripping". Nessa técnica, uma solução é extrudada através de um capilar a uma vazão baixa e cai em outra solução por gravidade. Assim, é possível recobrir uma partícula com alginato de cálcio, como estudou Chan et al. (2009).

O método "dripping" é um dos mais antigos e mais simples métodos para microencapsulação de compostos. Existem diversos tipos de "dripping". Três deles são apresentados na Figura 1 (WHELEHAN; MARISON, 2011).

Figura 1 - Três diferentes métodos de "dripping". (a) "dripping" simples; (b) "dripping" com extrusão eletrostática; (c) "dripping" com fluxo de ar coaxial (WHELEHAN; MARISON, 2011).

Com o objetivo de gerar uma barreira física em aglomerados de grânulos de amido de milho, para que se apresentassem mais resistentes à gelatinização do que grânulos de amido comuns, foi realizado o processo de aglomeração de grânulos de amido de milho com alginato de cálcio, a partir do método "dripping".

Para análise das modificações interparticulares ocorridas nos grânulos de amido de milho, foram realizadas análises para verificação do aumento da temperatura de gelatinização e modificações nas ligações e estruturas cristalinas presentes nos grânulos.

2 MATERIAIS E MÉTODOS 2.1 Materiais

Para a produção das partículas aglomeradas de amido de milho e alginato de cálcio foram utilizados amido de milho (Ingredion Brasil – Ingredientes Industriais Ltda, Brasil), solução de alginato de sódio a 3,5% (w/w) (Protanal VK14, FMC, EUA), álcool etílico (Dinâmica, mín. 99,5%, Brasil) e solução de cloreto de cálcio dihidratado P. A. a 1% (w/v) (Sigma-Aldrich, EUA).

2.2 Métodos

2.2.1 Produção das partículas

Primeiramente, foi preparada uma solução de alginato de sódio a 3,5% (w/w). Para melhor dispersão e solubilização em água, e sem formação de grumos, adicionouse cerca de 1 ml de álcool etílico ao pó de alginato. Posteriormente, foram adicionadas quantidades diferentes de amido de milho para cada um dos 6 experimentos realizados, possuíssem partículas para que as determinadas frações de amido depois de secas. As amostras foram nomeadas conforme sua concentração de amido de milho, como é apresentado na Tabela 1.

Tabela 1 – Composição das partículas de amido de milho em cada um dos experimentos realizados.

Amostra	Fração de ostra Amido Águ (%) (g) (g)		Água (g)	Alginato (g)
SA00	0	0	160,83	5,83
SA50	50	6,69	160,83	5,83
SA60	60	10,03	160,83	5,83
SA70	70	15,6	160,83	5,83
SA80	80	26,76	160,83	5,83
SA90	90	60,21	160,83	5,83

As suspensões foram mantidas sob agitação mecânica a 700 rpm, e bombeadas por um tubo de 6 mm até um bico gotejador, constituído de uma agulha para medicamentos (0,70 mm de diâmetro interno) e um tubo de

silicone para a passagem de ar comprimido paralelamente ao sentido da formação das gotas. Desta forma, a agulha utilizada e o tubo de silicone foram acoplados, formando dois tubos concêntricos, onde no centro (agulha) ocorreu o escoamento da suspensão, e no ânulo ocorreu a passagem de ar comprimido. A vazão de solução ligante foi mantida em 0.5 mL/min, e a vazão de ar comprimido foi ajustada manualmente, mantendo-se a válvula reguladora de pressão em 1,5 bar. As gotículas produzidas pelo bico foram depositadas em solução aquosa de cloreto de cálcio a 1% (w/v), e sob agitação magnética. As condições operacionais resultaram em um gotejamento sistema de que produziu partículas individualmente. O esquema da produção das partículas é apresentado na Figura 2.

Figura 2 - Esquema da produção das partículas aglomeradas de amido de milho e alginato de cálcio.

As partículas produzidas foram retiradas da solução de cloreto de cálcio, colocadas em placas de Petri e secas em estufa convectiva a 65 °C por 24 horas.

2.2.2 Calorimetria Diferencial de Varredura (DSC)

Para a realização das análises de calorimetria diferencial de varredura foi utilizado um equipamento de DSC TA 2010 controlado por módulo TA 4000 (TA

Instruments, EUA) e com acessório para resfriamento (SOBRAL et al., 2001).

Uma pequena amostra. de aproximadamente partículas 6 mg, das aglomeradas foi acondicionada em uma cápsula e adicionou-se água destilada para se obter uma suspensão de aproximadamente 80% de água. O tempo de hidratação das amostras foi de 2 horas. As amostras foram aquecidas de 20 °C a 120 °C a uma taxa de 10 °C/min. Transições térmicas de gelatinização foram caracterizadas por To (temperatura inicial). Tp (temperatura do pico endotérmico), Tc (temperatura de conclusão) e ΔH (entalpia de gelatinização) (HAN e BEMILLER, 2007; PEREIRA et al., 2010).

2.2.3 Espectroscopia de Infravermelho com Transformada de Fourier (FT-IR)

Para a realização das análises de FT-IR, conforme Vicentini et al (2005), as amostras foram colocadas sobrepostas sob o sensor do espectrofotômetro Spectrum One (Perkin Elmer, Estados Unidos. Foram realizadas 16 varreduras espectrais de 40 a 4.000 cm⁻¹ com resolução de 2 cm⁻¹. Depois de coletados, os dados foram tratados com o software Spectrum One, (Spectrum One, versão 5.3).

2.2.4 Difração de Raio-X

Para as análises de difração de Raio-X foi utilizado o equipamento MiniFlex 600 XRD (Rigaku, Japão). A faixa de ângulo utilizado na análise variou entre 5° e 60° com velocidade de 15°/min.

Como as partículas aglomeradas encontravam-se com estruturas de esferas grandes, foi necessária uma etapa de redução de tamanho, em que as partículas foram trituradas em almofariz, obtendo-se um pó fino. O equipamento utilizado permite a análise de DRX apenas para pós.

2.2.5 Microscopia Eletrônica de Varredura (MEV)

As amostras foram submetidas a análises de microscopia eletrônica de varredura (MEV), a fim de avaliar possíveis transformações na superfície dos grânulos.

O equipamento utilizado foi o microscópio eletrônico Hitachi modelo TM3000 (Hitachi, Japão). A fonte de elétrons utilizada no MEV é filamento de tungstênio e a voltagem de 15 kV. O equipamento apresenta baixo vácuo e não possui captador de elétrons secundários. Foram utilizados aumentos de até 1,5 mil vezes.

3. RESULTADOS E DISCUSSÃO

3.1 Produção das partículas

As partículas aglomeradas foram produzidas pelo gotejamento da suspensão de alginato de sódio e amido de milho, em solução de cloreto de cálcio, e apresentaramse individualmente, uma a uma.

Observou-se que quanto menor foi a quantidade de amido, mais circular apresentou-se a partícula. Observou-se que as partículas SA90 foram facilmente quebradas quando manuseadas, diferentemente das partículas com maior concentração de alginato (SA50, SA60 e SA70), as quais apresentaram estrutura mais rígida e compacta.

A redução da fração de amido e, consequentemente, o aumento da fração de ligante, resultaram no decréscimo do tamanho das partículas aglomeradas, de forma que os grânulos SA90, SA80, SA70, SA60 e SA50 podem ser classificados em tamanhos decrescente, respectivamente.

3.2 Calorimetria Diferencial de Varredura (DSC)

Observou-se que o amido de milho de milho nativo apresentou temperaturas de início, pico e final de gelatinização semelhantes com as reportadas na literatura (SINGH et al., 2003). As partículas aglomeradas com alginato de cálcio SA90, SA80, SA70, SA60 e SA50 apresentaram diferenças em todos os parâmetros.

As partículas SA00 trataram-se de partículas de alginato de cálcio e sem amido em sua composição. Assim, não houve pico de gelatinização para essa amostra dentro da temperatura estipulada, de 20 °C a 100 °C, como pode ser observado na Figura 3.

Figura 3 - Curvas de DSC das partículas de amido de milho aglomeradas com alginato de cálcio por "dripping", com diferentes concentrações de amido.

Para as partículas aglomeradas com 90% de grânulos de amido em sua composição (SA90), os valores de To, Tm e Tc tiveram um aumento de 2 °C, em comparação com o amido de milho nativo. Conforme é apresentado na Figura 3 e na Tabela 2, à medida em que a quantidade de grânulos de amido diminuiu nas amostras, ou seja, que a quantidade de alginato de cálcio aumentou, temperaturas ficaram as gradativamente maiores que as temperaturas do amido nativo.

A entalpia de gelatinização das partículas aglomeradas ficaram menores conforme diminuiu-se a quantidade de amido presente nas partículas. A entalpia das partículas SA50 foi de 6,285 J/g, um pouco menos da metade da entalpia de gelatinização

dos grânulos de amido de milho nativo, que foi de 12,602 J/g. (Tabela 2). Porém, se considerarmos a entalpia de gelatinização pela fração de grânulos de amido de milho presente nas partículas, não há diferença significante entre os Δ Hgel do amido de milho nativo e das partículas SA50. Isso porque, se for considerado a entalpia de gelatinização por grama de amido, e não de matéria seca, o valor da entalpia de AS50 é de 12,570 Joules para cada grama de amido.

Tabela 2 - Valores de To, Tm, Tc e Δ H das partículas aglomeradas com alginato de cálcio por "dripping", com diferentes concentrações de amido

annao					
Amostra	Umidade (%)	To (°C)	Tm (°C)	Tc (°C)	∆Hgel (J/g)
Amido de milho					
nativo	78,17	64,4	70,06	80,64	12,602**
SA90	76,28	66,82	72,86	83,91	9,616**
SA80	81,66	65,96	72,79	83,63	9,711**
SA70	74,95	68,85	76,06	86,26	6,754**
SA60	80,98	67,95	75,91	88,03	7,040**
SA50	76,34	67,85	76,12	89,03	6,285**
SA00	70,36	-*	-*	-*	_*

*Valores não determinados pelo programa.

**Os valores foram calculados baseando-se na massa de amido desidratado.

3.3 Espectroscopia de Infravermelho com Transformada de Fourier (FT-IR)

Todos os espectros observados nessa análise apresentaram picos entre (3289 e 3316) cm⁻¹, referentes ao estiramento dos grupos hidroxil (-OH), formadores de pontes de hidrogênio (TAPIA-BLÁCIDO, 2006) e característicos da contribuição da molécula de água, como é apresentado na Figura 4.

A respeito do pico 2926 cm-1 do amido de milho nativo, houve uma diferenciação nas amostras das partículas aglomeradas. Conforme diminuiu-se a quantidade de amido presente, o pico se tornou cada vez menos intenso. Esse pico é referente ao alongamento das ligações CH (CH2 assimétrico) (MAHECHA, 2009; TAPIA-BLÁCIDO, 2006).

O pico na região de 1411 cm⁻¹ presente no espectro do alginato de cálcio, referente à vibração de alongamento assimétrico do grupo –COO, diminuiu de intensidade gradativamente, à medida em que а quantidade de amido presente nas partículas aumentou. Já o pico de 1336 cm⁻¹ observado no espectro de amido de milho nativo diminuiu de intensidade nos outros espectros, conforme diminuiu-se a quantidade de amido presente (Figura 4).

Observou-se que os picos característicos do amido de milho nativo, como em 995 cm⁻¹ mantiveram-se nos espectros das partículas aglomeradas, embora sua intensidade tenha diminuído com o aumento da fração de alginato de cálcio presente.

Figura 4 - Espectro de FT-IR das partículas de amido de milho aglomeradas com alginato de cálcio por "dripping", com diferentes concentrações de amido de milho.

3.4 Difração de Raio-X (DRX)

Conforme apresentado na Figura 5, o espectro de DRX de amido de milho nativo apresentou picos em 15° e 23° e um pico duplo em 17° e 18°, característico de domínio cristalino tipo A (PEREIRA et al., 2010). O alginato de cálcio (SA00) apresenta espectro com alguns picos amorfos (ZHAO et al., 2014).

Observou-se que nos espectros de SA80 e SA90, não houve grandes modificações nos picos, em comparação com o espectro de amido de milho nativo, embora os picos tenham aparecido em menores intensidades. Sugere-se que para essas partículas, houve manutenção do padrão de cristalinidade do amido nativo e que a estrutura foi preservada. As partículas com (80 e 90)% de amido apresentarm picos relacionados ao alginato de cálcio muito pequenos, como em 11°, 25° e 29° (Figura 5).

As partículas SA70, SA60 e SA50 apresentaram picos característicos do alginato de cálcio mais intensos e os picos característicos da cristalinidade do amido pouco intensos.

Os picos referentes à cristalinidade do amido (15°, 17°, 18° e 23°) diminuíram de intensidade conforme aumentou-se а quantidade de alginato de cálcio nas partículas. Houve, portanto, maior preservação da estrutura cristalina do grânulo de amido com o aumento da quantidade de grânulos de amido de milho presente.

Figura 5 - Espectro de DRX das partículas de amido de milho aglomeradas com alginato de cálcio por "dripping", com diferentes concentrações de amido.

3.5 Microscopia Eletrônica de Varredura (MEV)

Observou-se que em relação aos grânulos de amido de milho nativo, as partículas SA90, SA80, SA70, SA60 e SA50 apresentaram-se unidas umas às outras, com a presença de pontes sólidas formadas pelo alginato de cálcio. Fica nítido nas imagens da Figura 6 que conforme a quantidade de amido na partícula foi diminuída, os grânulos de amido encontraram-se mais aglomerados, e com maior número de pontes sólidas visíveis.

Figura 6 – Imagens obtidas por MEV (aumento de 100 vezes) das partículas de amido de milho aglomeradas com alginato de cálcio por "dripping", com diferentes concentrações de amido.

SAO

Particulas de Alginato

O tamanho das partículas formadas aumentou com adição de amido de milho em sua composição. As partículas com maiores frações de alginato de cálcio, como as SA60 e SA50, apresentaram menores tamanhos. As partículas SA00, sem grânulos de amido de milho, apresentaram os menores tamanhos, além de apresentarem-se unidas umas às outras, devido a pontes formadas durante a secagem convectiva.

4 CONCLUSÃO

Diante dos resultados obtidos pelas análises de DSC, observou-se que a aglomeração dos grânulos de amido de milho com o alginato de cálcio pelo método "dripping" gerou partículas com uma estrutura mais resistente à gelatinização. Pode-se, assim, sugerir que a presenca do alginato de cálcio nos grânulos de amido de milho criou uma barreira física que proporcionou resistência térmica às partículas aglomeradas.

A partir das análises de MEV, concluiu-se que houve aglomeração das partículas de amido de milho com alginato de cálcio e que elas tornaram-se menores com a diminuição da fração de amido de milho presente.

Por fim, concluiu-se que houve modificações nas partículas produzidas por aglomeração por "dripping" e que elas tornaram-se mais resistentes à gelatinização conforme aumentou-se a fração de alginato de cálcio presente.

REFERÊNCIAS

CHAN, E.; LEE, B.; RAVINDRA, P.; PONCELET, D. Prediction models for shape and size of ca-alginate produced through extrusion-dripping method. **Journal of Colloid and Interface Science**, v. 338, p. 63-73, 2009. DACANAL, G. C.; MENEGALLI, F. C. Experimental study and optimization of the agglomeration of acerola powder in a conical fluid bed. **Powder Technology**, v. 188, p. 187-194, 2009.

HAM, J. A.; BEMILLER, J. N. Preparation and physical characteristics of slowly digesting modified food starches. **Carbohydrate Polymers**, v. 67, n. 67, p. 366-374, 2007.

HARALAMPU, S. G. Resistant starch – a review of the physical properties and biological impact of RS3. **Carbohydrate Polymers**, v. 41, p. 285-92, 2000.

LEHMANN U.; ROBIN F. Slowly digestible starch-its structure and health implications: a review. **Food Science & Technology**, v. 18, p. 346-355, 2007.

MAHECHA M. M. A. Elaboração e caracterização de biofilms de farinha de biri (Canna indica L.). 2009. 159p. Dissertação (Mestrado em Engenharia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2003.

PEREIRA, N. R.; GODOI, F. C.; ROCHA, S. C. S. Drying of starch suspension in spouted bed with inert particles: physical and thermal analysis of product. **Drying Technology**, v. 28, p. 1288-1296, 2010.

SAJILATA, M. G.; KINGHAL, R. S.; KULKARNI, P. R. Resistant starch-a review. **Comprehensive reviews in food science and food safety**, v. 5, p.1-17, 2006.

SINGH, N.; SINGH, J.; KAUR, L.; SODHI, N. S.; GILL B. S. Morphological, thermal and rheological properties of starches from different botanical sources. **Food Chemistry**, v. 81, p. 219-231, 2003.

SINGH, J.; DARTOIS, A.; KAUR, L. Starch digestibility in food matrix: a review. **Trends in Food Science & Technology**, v. 21, p. 168-180, 2010.

SOBRAL, P. J. A.; MENEGALLI, F. C.; HUBINGER, M. D.; ROQUES, M. A. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. **Food Hydrocolloids**, v. 15, p. 42-432, 2001.

TAPIA-BLÁCIDO, D. R. Filmes a base de derivados do amaranto para uso em alimentos. 2006. 351p. Tese (Doutorado em Engenharia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2006.

TURCHIULI, C.; ELOUALIA, Z.; EL-MANSOURE, N.; DUMOULIN, E. Fluidised bed agglomeration: Agglomerates shape and end-use properties. **Powder Technology**, v. 157, p. 168-175, 2005.

VICENTINI, N. M.; DUPUY, N.; LEITZELMAN, M.; CEREDA, M. P.; SOBRAL, P. J. A. Prediction of cassava starch edible film properties by chemometric analysis of infrared spectra. **Spectroscopy Letters**, v.38, n. 6, p. 749-767, 2005.

WHELEHAN, M.; MARISON, I. W. Microencapsulation by dripping and jet break up. **Bioencapsulation Innovations**, p. 4-10, september, 2011.

ZHAO, K.; FENG, L.; LI, Z.; FU, Y.; ZHANG, X.; WEI, J.; WEI, S. Preparation, characterization and photocatalytic degradation properties of a TiO2/calcium alginate composite film and the recovery of TiO2 nanoparticles. **Royal Society of Chemistry**, v. 4, p. 51321-51329, 2014.

AGRADECIMENTOS

À CAPES pela bolsa concedida durante o mestrado. À FAPESP e CNPq pelos auxílios financeiros.