

Molecular Iodine - An Efficient Oxidative Reagent for Aromatization of Trifluoromethyl Substituted Chromenones

Jussara Navarini (PG), Helio G. Bonacorso* (PQ), Carson W. Wiethan (PG), Rosália Andrighetto (PG), Marcos A. P. Martins (PQ), Nilo Zanatta

Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS. *E-mail heliogb@base.ufsm.br

Keywords: Molecular Iodine, Chromenones, Oxidative Aromatization

INTRODUCTION

Functionalized chromenes and benzopyranes are important compounds which, due to their biological activity, find wide application in medicinal chemistry. They display not only spasmolytic, diuretic, clotting, antiviral, anti-tumoral and anti-anaphylactic activity, but can also be used as pigments, photo-active materials and biodegradable agrochemicals.

The use of molecular iodine as an oxidant to promote aromatization of cyclohexanone derivatives was first reported in 1980 by Tamura and Yoshimoto³. In recent years, molecular iodine has received considerable attention as an inexpensive, non-toxic, readily available oxidant to promote aromatization of cyclohexanone derivatives and their heterocyclic analogues.^{4,5,6} In this context, herein we describe the synthesis of 5-alkoxy-3,4-dihydro-2Hchromenes, using as starting material the trifluoromethylated chromenones recently reported by our research group.⁷

RESULTS AND DISCUSSION

The reactions so far investigated can be seen in Scheme 1. Initially, the reactions of compounds 1 and MeOH/I₂ under reflux were carried out for 16-24 hours, which led to formation of compounds 2 in 65-89 % yields. Subsequently, aromatization reactions of the chromenones were performed using different alcohols (ethanol, npropanol and benzilic alcohol), where Ar=Ph and **R**=Me (Scheme1). Only reactions using ethanol and *n*-propanol led to derivatives **2**; for the other alcohols the starting material was recovered.

The chromenes 2 were purified by column chromatography using hexane/ethyl acetate (4:1) as eluent and characterized by NMR ¹H, and ¹³C and GC/MS spectrometry.

i: I₂ (2 equiv.), R¹OH, 70ºC, 16-24 h Ar: Ph, 4-NO2Ph, 4-MeOPh

R:Me, Ph, 2-Furyl R1: CH3, C2H5, n-C3H7 Scheme 1: 5-alkoxy-3,4-dihydro-2H-Synthesis of chromenes (2)

CONCLUSION

The methodology described, I_2/R^1OH , was efficient and versatile for obtaining of 5-alkoxy-3,4-dihydro-2H-chromenes 2, which contain a benzo[b]pyran, which contain an alkoxy substituent at C-5 derived from the employed alcohol.

ACKNOWLEDGEMENTS

CNPq-CAPES-FATEC

REFERENCES

(a) Foye, W. O. Prinicipi di Chemico Farmaceutica; Piccin: Padova, Italy, 1991; pp. 416; (b) Andreani, L. L.; Lapi, E. Bull. *Chim. Farm.* **1960**, *99*, 583; (c) Zhang, Y. L.; Chen, B. Z.; Zheng, K. Q.; Xu, M. L.; Lei, X. H. *Yao Xue Xue Bao.* **1982**, *17*, 17; Chem. Abstr. 1982, 96, 135383e; (d) Witte, E. C.; Neubert, P.; Roesch, A. Ger. Offen. DE, 1986; Chem. Abstr. 1986, 104, 224915f; (e) Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Eur. J. Med. Chem. 1993, 28, 517.

- Zhong, W.; Zhao, Y.; Su, W. Tetrahedron, 2008, 64, 5491.
- ³ Tamura, Y.; Yoshimoto, Y. Chem. Ind. **1980**, 888.
- ⁴ Mphahlele, J. M. *Molecules*, **2009**, *14*, 5308.

⁵ Banerjee, A. K.; Vera, w.; Mora, H.; Laya, M. S.; Bedoya, L.; Cabrera E. V. J. Sci. Ind. Res. 2006, 65, 299.

⁶ Mphahlele, J. M.; Moeka, B. T. Org. Biomol. Chem. 2005, 3,

2469. Bonacorso, H. G.; Navarini, J.; Wiethan, C. W.; Bortolotto, G. P.; Paim, G.R.; Cavinatto, S.; Martins, M.A.; Zanatta, N.; Caro, M. S. B. J. Fluorine Chem. 2011, 132, 166.